A survey on label-efficient deep image segmentation: Bridging the gap between weak supervision and dense prediction

W Shen, Z Peng, X Wang, H Wang… - IEEE transactions on …, 2023 - ieeexplore.ieee.org
The rapid development of deep learning has made a great progress in image segmentation,
one of the fundamental tasks of computer vision. However, the current segmentation …

Survey: Image mixing and deleting for data augmentation

H Naveed, S Anwar, M Hayat, K Javed… - Engineering Applications of …, 2024 - Elsevier
Neural networks are prone to overfitting and memorizing data patterns. To avoid over-fitting
and enhance their generalization and performance, various methods have been suggested …

MIC: Masked image consistency for context-enhanced domain adaptation

L Hoyer, D Dai, H Wang… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
In unsupervised domain adaptation (UDA), a model trained on source data (eg synthetic) is
adapted to target data (eg real-world) without access to target annotation. Most previous …

Semi-supervised semantic segmentation using unreliable pseudo-labels

Y Wang, H Wang, Y Shen, J Fei, W Li… - Proceedings of the …, 2022 - openaccess.thecvf.com
The crux of semi-supervised semantic segmentation is to assign pseudo-labels to the pixels
of unlabeled images. A common practice is to select the highly confident predictions as the …

Revisiting weak-to-strong consistency in semi-supervised semantic segmentation

L Yang, L Qi, L Feng, W Zhang… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
In this work, we revisit the weak-to-strong consistency framework, popularized by FixMatch
from semi-supervised classification, where the prediction of a weakly perturbed image …

Bidirectional copy-paste for semi-supervised medical image segmentation

Y Bai, D Chen, Q Li, W Shen… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
In semi-supervised medical image segmentation, there exist empirical mismatch problems
between labeled and unlabeled data distribution. The knowledge learned from the labeled …

Daformer: Improving network architectures and training strategies for domain-adaptive semantic segmentation

L Hoyer, D Dai, L Van Gool - Proceedings of the IEEE/CVF …, 2022 - openaccess.thecvf.com
As acquiring pixel-wise annotations of real-world images for semantic segmentation is a
costly process, a model can instead be trained with more accessible synthetic data and …

Hrda: Context-aware high-resolution domain-adaptive semantic segmentation

L Hoyer, D Dai, L Van Gool - European conference on computer vision, 2022 - Springer
Unsupervised domain adaptation (UDA) aims to adapt a model trained on the source
domain (eg synthetic data) to the target domain (eg real-world data) without requiring further …

Semi-supervised semantic segmentation with cross pseudo supervision

X Chen, Y Yuan, G Zeng… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
In this paper, we study the semi-supervised semantic segmentation problem via exploring
both labeled data and extra unlabeled data. We propose a novel consistency regularization …

St++: Make self-training work better for semi-supervised semantic segmentation

L Yang, W Zhuo, L Qi, Y Shi… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Self-training via pseudo labeling is a conventional, simple, and popular pipeline to leverage
unlabeled data. In this work, we first construct a strong baseline of self-training (namely ST) …