[HTML][HTML] Advances and challenges in conversational recommender systems: A survey

C Gao, W Lei, X He, M de Rijke, TS Chua - AI open, 2021 - Elsevier
Recommender systems exploit interaction history to estimate user preference, having been
heavily used in a wide range of industry applications. However, static recommendation …

[HTML][HTML] From word embeddings to pre-trained language models: A state-of-the-art walkthrough

M Mars - Applied Sciences, 2022 - mdpi.com
With the recent advances in deep learning, different approaches to improving pre-trained
language models (PLMs) have been proposed. PLMs have advanced state-of-the-art …

Causal intervention for leveraging popularity bias in recommendation

Y Zhang, F Feng, X He, T Wei, C Song, G Ling… - Proceedings of the 44th …, 2021 - dl.acm.org
Recommender system usually faces popularity bias issues: from the data perspective, items
exhibit uneven (usually long-tail) distribution on the interaction frequency; from the method …

Bias and debias in recommender system: A survey and future directions

J Chen, H Dong, X Wang, F Feng, M Wang… - ACM Transactions on …, 2023 - dl.acm.org
While recent years have witnessed a rapid growth of research papers on recommender
system (RS), most of the papers focus on inventing machine learning models to better fit …

AutoDebias: Learning to debias for recommendation

J Chen, H Dong, Y Qiu, X He, X Xin, L Chen… - Proceedings of the 44th …, 2021 - dl.acm.org
Recommender systems rely on user behavior data like ratings and clicks to build
personalization model. However, the collected data is observational rather than …

KuaiRec: A fully-observed dataset and insights for evaluating recommender systems

C Gao, S Li, W Lei, J Chen, B Li, P Jiang, X He… - Proceedings of the 31st …, 2022 - dl.acm.org
The progress of recommender systems is hampered mainly by evaluation as it requires real-
time interactions between humans and systems, which is too laborious and expensive. This …

Incorporating bias-aware margins into contrastive loss for collaborative filtering

A Zhang, W Ma, X Wang… - Advances in Neural …, 2022 - proceedings.neurips.cc
Collaborative filtering (CF) models easily suffer from popularity bias, which makes
recommendation deviate from users' actual preferences. However, most current debiasing …

Causerec: Counterfactual user sequence synthesis for sequential recommendation

S Zhang, D Yao, Z Zhao, TS Chua, F Wu - Proceedings of the 44th …, 2021 - dl.acm.org
Learning user representations based on historical behaviors lies at the core of modern
recommender systems. Recent advances in sequential recommenders have convincingly …

Clicks can be cheating: Counterfactual recommendation for mitigating clickbait issue

W Wang, F Feng, X He, H Zhang, TS Chua - Proceedings of the 44th …, 2021 - dl.acm.org
Recommendation is a prevalent and critical service in information systems. To provide
personalized suggestions to users, industry players embrace machine learning, more …

Trustworthy recommender systems

S Wang, X Zhang, Y Wang, F Ricci - ACM Transactions on Intelligent …, 2024 - dl.acm.org
Recommender systems (RSs) aim at helping users to effectively retrieve items of their
interests from a large catalogue. For a quite long time, researchers and practitioners have …