Pseudo-Riemannian geodesics and billiards

B Khesin, S Tabachnikov - Advances in Mathematics, 2009 - Elsevier
In pseudo-Riemannian geometry the spaces of space-like and time-like geodesics on a
pseudo-Riemannian manifold have natural symplectic structures (just like in the Riemannian …

Open problems and questions about geodesics

K Burns, VS Matveev - Ergodic Theory and Dynamical Systems, 2021 - cambridge.org
The paper surveys open problems and questions related to geodesics defined by
Riemannian, Finsler, semi-Riemannian and magnetic structures on manifolds. It is an …

Geometrical interpretation of Benenti systems

AV Bolsinov, VS Matveev - Journal of Geometry and Physics, 2003 - Elsevier
We show that the following two separately developed theories, the theory of Benenti systems
in mathematical physics and the theory of projectively equivalent metrics in classical …

Orthogonal separation of variables for spaces of constant curvature

AV Bolsinov, AY Konyaev, VS Matveev - Forum Mathematicum, 2024 - degruyter.com
We construct all orthogonal separating coordinates in constant curvature spaces of arbitrary
signature. Further, we construct explicit transformation between orthogonal separating and …

Geodesic equivalence via integrability

P Topalov, VS Matveev - Geometriae Dedicata, 2003 - Springer
We suggest a construction that, given an orbital diffeomorphism between two Hamiltonian
systems, produces integrals of them. We treat geodesic equivalence of metrics as the main …

A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields

RL Bryant, G Manno, VS Matveev - Mathematische Annalen, 2008 - Springer
Mathematische Annalen Page 1 Math. Ann. (2008) 340:437–463 DOI 10.1007/s00208-007-0158-3
Mathematische Annalen A solution of a problem of Sophus Lie: normal forms of two-dimensional …

Proof of the projective Lichnerowicz-Obata conjecture

VS Matveev - Journal of Differential Geometry, 2007 - projecteuclid.org
PROOF OF THE PROJECTIVE LICHNEROWICZ-OBATA CONJECTURE Vladimir S. Matveev
Abstract 1. Introduction 1.1. Results. Definition 1. L Page 1 j. differential geometry 75 (2007) …

Complete Einstein metrics are geodesically rigid

V Kiosak, VS Matveev - Communications in Mathematical Physics, 2009 - Springer
Complete Einstein Metrics are Geodesically Rigid Page 1 Digital Object Identifier (DOI)
10.1007/s00220-008-0719-7 Commun. Math. Phys. 289, 383–400 (2009) Communications in …

Local normal forms for geodesically equivalent pseudo-Riemannian metrics

A Bolsinov, V Matveev - Transactions of the American Mathematical Society, 2015 - ams.org
Two pseudo-Riemannian metrics $ g $ and $\bar g $ are geodesically equivalent if they
share the same (unparameterized) geodesics. We give a complete local description of such …

Geodesics on an ellipsoid in Minkowski space

D Genin, B Khesin, S Tabachnikov - arXiv preprint arXiv:0705.0188, 2007 - arxiv.org
We describe the geometry of geodesics on a Lorentz ellipsoid: give explicit formulas for the
first integrals (pseudo-confocal coordinates), curvature, geodesically equivalent Riemannian …