Empowering things with intelligence: a survey of the progress, challenges, and opportunities in artificial intelligence of things

J Zhang, D Tao - IEEE Internet of Things Journal, 2020 - ieeexplore.ieee.org
In the Internet-of-Things (IoT) era, billions of sensors and devices collect and process data
from the environment, transmit them to cloud centers, and receive feedback via the Internet …

Artificial intelligence in the creative industries: a review

N Anantrasirichai, D Bull - Artificial intelligence review, 2022 - Springer
This paper reviews the current state of the art in artificial intelligence (AI) technologies and
applications in the context of the creative industries. A brief background of AI, and …

Vision transformers for single image dehazing

Y Song, Z He, H Qian, X Du - IEEE Transactions on Image …, 2023 - ieeexplore.ieee.org
Image dehazing is a representative low-level vision task that estimates latent haze-free
images from hazy images. In recent years, convolutional neural network-based methods …

Maxim: Multi-axis mlp for image processing

Z Tu, H Talebi, H Zhang, F Yang… - Proceedings of the …, 2022 - openaccess.thecvf.com
Recent progress on Transformers and multi-layer perceptron (MLP) models provide new
network architectural designs for computer vision tasks. Although these models proved to be …

Underwater image enhancement with hyper-laplacian reflectance priors

P Zhuang, J Wu, F Porikli, C Li - IEEE Transactions on Image …, 2022 - ieeexplore.ieee.org
Underwater image enhancement aims at improving the visibility and eliminating color
distortions of underwater images degraded by light absorption and scattering in water …

All-in-one image restoration for unknown corruption

B Li, X Liu, P Hu, Z Wu, J Lv… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
In this paper, we study a challenging problem in image restoration, namely, how to develop
an all-in-one method that could recover images from a variety of unknown corruption types …

Curricular contrastive regularization for physics-aware single image dehazing

Y Zheng, J Zhan, S He, J Dong… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Considering the ill-posed nature, contrastive regularization has been developed for single
image dehazing, introducing the information from negative images as a lower bound …

Self-augmented unpaired image dehazing via density and depth decomposition

Y Yang, C Wang, R Liu, L Zhang… - Proceedings of the …, 2022 - openaccess.thecvf.com
To overcome the overfitting issue of dehazing models trained on synthetic hazy-clean image
pairs, many recent methods attempted to improve models' generalization ability by training …

Contrastive learning for compact single image dehazing

H Wu, Y Qu, S Lin, J Zhou, R Qiao… - Proceedings of the …, 2021 - openaccess.thecvf.com
Single image dehazing is a challenging ill-posed problem due to the severe information
degeneration. However, existing deep learning based dehazing methods only adopt clear …

Transweather: Transformer-based restoration of images degraded by adverse weather conditions

JMJ Valanarasu, R Yasarla… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Removing adverse weather conditions like rain, fog, and snow from images is an important
problem in many applications. Most methods proposed in the literature have been designed …