[HTML][HTML] Deep learning in computer vision: A critical review of emerging techniques and application scenarios
Deep learning has been overwhelmingly successful in computer vision (CV), natural
language processing, and video/speech recognition. In this paper, our focus is on CV. We …
language processing, and video/speech recognition. In this paper, our focus is on CV. We …
A survey on instance segmentation: state of the art
Object detection or localization is an incremental step in progression from coarse to fine
digital image inference. It not only provides the classes of the image objects, but also …
digital image inference. It not only provides the classes of the image objects, but also …
Maxim: Multi-axis mlp for image processing
Recent progress on Transformers and multi-layer perceptron (MLP) models provide new
network architectural designs for computer vision tasks. Although these models proved to be …
network architectural designs for computer vision tasks. Although these models proved to be …
Deep generalized unfolding networks for image restoration
Deep neural networks (DNN) have achieved great success in image restoration. However,
most DNN methods are designed as a black box, lacking transparency and interpretability …
most DNN methods are designed as a black box, lacking transparency and interpretability …
Learning enriched features for fast image restoration and enhancement
Given a degraded input image, image restoration aims to recover the missing high-quality
image content. Numerous applications demand effective image restoration, eg …
image content. Numerous applications demand effective image restoration, eg …
Hinet: Half instance normalization network for image restoration
In this paper, we explore the role of Instance Normalization in low-level vision tasks.
Specifically, we present a novel block: Half Instance Normalization Block (HIN Block), to …
Specifically, we present a novel block: Half Instance Normalization Block (HIN Block), to …
Multi-stage progressive image restoration
Image restoration tasks demand a complex balance between spatial details and high-level
contextualized information while recovering images. In this paper, we propose a novel …
contextualized information while recovering images. In this paper, we propose a novel …
A robust deformed convolutional neural network (CNN) for image denoising
Due to strong learning ability, convolutional neural networks (CNNs) have been developed
in image denoising. However, convolutional operations may change original distributions of …
in image denoising. However, convolutional operations may change original distributions of …
Deep learning on image denoising: An overview
Deep learning techniques have received much attention in the area of image denoising.
However, there are substantial differences in the various types of deep learning methods …
However, there are substantial differences in the various types of deep learning methods …
Learning enriched features for real image restoration and enhancement
With the goal of recovering high-quality image content from its degraded version, image
restoration enjoys numerous applications, such as in surveillance, computational …
restoration enjoys numerous applications, such as in surveillance, computational …