Poststack seismic data denoising based on 3-D convolutional neural network

D Liu, W Wang, X Wang, C Wang… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
Deep learning has been successfully applied to image denoising. In this study, we take one
step forward by using deep learning to suppress random noise in poststack seismic data …

Self-adaptive denoising net: Self-supervised learning for seismic migration artifacts and random noise attenuation

H Wu, B Zhang, N Liu - Journal of Petroleum Science and Engineering, 2022 - Elsevier
Seismic noise attenuation is essential for seismic interpretation and reservoir
characterization. Recently, many researchers have applied convolutional neural network …

Applications of savitzky-golay filter for seismic random noise reduction

Y Liu, B Dang, Y Li, H Lin, H Ma - Acta Geophysica, 2016 - Springer
Abstract This article utilizes Savitzky–Golay (SG) filter to eliminate seismic random noise.
This is a novel method for seismic random noise reduction in which SG filter adopts …

Seismic noise filtering based on generalized regression neural networks

N Djarfour, J Ferahtia, F Babaia, K Baddari… - Computers & …, 2014 - Elsevier
This paper deals with the application of Generalized Regression Neural Networks to the
seismic data filtering. The proposed system is a class of neural networks widely used for the …

Düşey Elektrik Sondajı Verilerinin Genelleştirilmiş Regresyon Sinir Ağları ile Ters Çözümü

D Durdağ, E Pekşen - Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 2024 - dergipark.org.tr
Düşey elektrik sondajı (DES) verilerinin ters çözümü doğrusal olmayan bir problem olması
nedeniyle zor bir işlemdir. Bu çalışmada, genelleştirilmiş regresyon sinir ağlarının özdirenç …