A survey of evolutionary algorithms for clustering

ER Hruschka, RJGB Campello… - IEEE Transactions on …, 2009 - ieeexplore.ieee.org
This paper presents a survey of evolutionary algorithms designed for clustering tasks. It tries
to reflect the profile of this area by focusing more on those subjects that have been given …

Multi-objective clustering ensemble for gene expression data analysis

K Faceli, MCP de Souto, DSA de Araujo… - Neurocomputing, 2009 - Elsevier
In this paper, we present an algorithm for cluster analysis that integrates aspects from cluster
ensemble and multi-objective clustering. The algorithm is based on a Pareto-based multi …

A multiobjective multi-view cluster ensemble technique: Application in patient subclassification

S Mitra, S Saha - PLoS One, 2019 - journals.plos.org
Recent high throughput omics technology has been used to assemble large biomedical
omics datasets. Clustering of single omics data has proven invaluable in biomedical …

Типологический анализ в социологии как диагностическая процедура

ГГ Татарова, НС Бабич, ГП Бессокирная… - 2023 - elibrary.ru
В монографии рассматривается эволюция представлений о типологическом методе в
социологии, место типологического анализа как метаметодики в структуре …

A unified multi-view clustering algorithm using multi-objective optimization coupled with generative model

S Mitra, M Hasanuzzaman, S Saha - ACM Transactions on Knowledge …, 2020 - dl.acm.org
There is a large body of works on multi-view clustering that exploit multiple representations
(or views) of the same input data for better convergence. These multiple views can come …

Multi-objective design of hierarchical consensus functions for clustering ensembles via genetic programming

ALV Coelho, E Fernandes, K Faceli - Decision Support Systems, 2011 - Elsevier
This paper investigates a genetic programming (GP) approach aimed at the multi-objective
design of hierarchical consensus functions for clustering ensembles. By this means, data …

Partitions selection strategy for set of clustering solutions

K Faceli, TC Sakata, MCP de Souto, AC de Carvalho - Neurocomputing, 2010 - Elsevier
Clustering is a difficult task: there is no single cluster definition and the data can have more
than one underlying structure. Pareto-based multi-objective genetic algorithms (eg, MOCK …

Data clustering based on complex network community detection

TBS de Oliveira, L Zhao, K Faceli… - 2008 IEEE Congress …, 2008 - ieeexplore.ieee.org
Data clustering is an important technique to extract and understand relevant information in
large data sets. In this paper, a clustering algorithm based on graph theoretic models and …

An empirical study on multi-objective genetic algorithms using clustering techniques

M Anusha, JGR Sathiaseelan - International Journal of …, 2016 - inderscienceonline.com
Clustering is a data mining technique widely used to find similar group of data. A better
cluster always have most similar data while the elements from the different clusters are …

Clusterização de dados utilizando técnicas de redes complexas e computação bioinspirada

TBS Oliveira - 2008 - teses.usp.br
A Clusterização de dados em grupos oferece uma maneira de entender e extrair
informações relevantes de grandes conjuntos de dados. A abordagem em relação a …