Computing locally injective mappings by advanced MIPS
Computing locally injective mappings with low distortion in an efficient way is a fundamental
task in computer graphics. By revisiting the well-known MIPS (Most-Isometric …
task in computer graphics. By revisiting the well-known MIPS (Most-Isometric …
Inexact coordinate descent: complexity and preconditioning
One of the key steps at each iteration of a randomized block coordinate descent method
consists in determining the update to a block of variables. Existing algorithms assume that in …
consists in determining the update to a block of variables. Existing algorithms assume that in …
Multi-agent reinforcement learning for cooperative coded caching via homotopy optimization
Introducing cooperative coded caching into small cell networks is a promising approach to
reducing traffic loads. By encoding content via maximum distance separable (MDS) codes …
reducing traffic loads. By encoding content via maximum distance separable (MDS) codes …
Decomposition techniques for multilayer perceptron training
L Grippo, A Manno… - IEEE transactions on …, 2015 - ieeexplore.ieee.org
In this paper, we consider the learning problem of multilayer perceptrons (MLPs) formulated
as the problem of minimizing a smooth error function. As well known, the learning problem of …
as the problem of minimizing a smooth error function. As well known, the learning problem of …
A block coordinate variable metric linesearch based proximal gradient method
In this paper we propose an alternating block version of a variable metric linesearch
proximal gradient method. This algorithm addresses problems where the objective function …
proximal gradient method. This algorithm addresses problems where the objective function …
Convergence analysis of inexact randomized iterative methods
N Loizou, P Richtárik - SIAM Journal on Scientific Computing, 2020 - SIAM
In this paper we present a convergence rate analysis of inexact variants of several
randomized iterative methods for solving three closely related problems: a convex stochastic …
randomized iterative methods for solving three closely related problems: a convex stochastic …
Recursive decomposition for nonconvex optimization
AL Friesen, P Domingos - arXiv preprint arXiv:1611.02755, 2016 - arxiv.org
Continuous optimization is an important problem in many areas of AI, including vision,
robotics, probabilistic inference, and machine learning. Unfortunately, most real-world …
robotics, probabilistic inference, and machine learning. Unfortunately, most real-world …
The 2-coordinate descent method for solving double-sided simplex constrained minimization problems
A Beck - Journal of Optimization Theory and Applications, 2014 - Springer
This paper considers the problem of minimizing a continuously differentiable function with a
Lipschitz continuous gradient subject to a single linear equality constraint and additional …
Lipschitz continuous gradient subject to a single linear equality constraint and additional …
A flexible coordinate descent method
K Fountoulakis, R Tappenden - Computational Optimization and …, 2018 - Springer
We present a novel randomized block coordinate descent method for the minimization of a
convex composite objective function. The method uses (approximate) partial second-order …
convex composite objective function. The method uses (approximate) partial second-order …
An alternating active-phase algorithm for multi-material topology optimization
DC Huamaní, FAM Gomes - Journal of the Brazilian Society of Mechanical …, 2023 - Springer
The alternating active-phase algorithm has recently been used to solve multi-material
topology optimization (TO) problems. The algorithm splits the multi-material problem into …
topology optimization (TO) problems. The algorithm splits the multi-material problem into …