Challenges and applications of large language models

J Kaddour, J Harris, M Mozes, H Bradley… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) went from non-existent to ubiquitous in the machine
learning discourse within a few years. Due to the fast pace of the field, it is difficult to identify …

Large language models: a comprehensive survey of its applications, challenges, limitations, and future prospects

MU Hadi, Q Al Tashi, A Shah, R Qureshi… - Authorea …, 2024 - authorea.com
Within the vast expanse of computerized language processing, a revolutionary entity known
as Large Language Models (LLMs) has emerged, wielding immense power in its capacity to …

Jailbroken: How does llm safety training fail?

A Wei, N Haghtalab… - Advances in Neural …, 2024 - proceedings.neurips.cc
Large language models trained for safety and harmlessness remain susceptible to
adversarial misuse, as evidenced by the prevalence of “jailbreak” attacks on early releases …

" do anything now": Characterizing and evaluating in-the-wild jailbreak prompts on large language models

X Shen, Z Chen, M Backes, Y Shen… - Proceedings of the 2024 on …, 2024 - dl.acm.org
The misuse of large language models (LLMs) has drawn significant attention from the
general public and LLM vendors. One particular type of adversarial prompt, known as …

[PDF][PDF] DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models.

B Wang, W Chen, H Pei, C Xie, M Kang, C Zhang, C Xu… - NeurIPS, 2023 - blogs.qub.ac.uk
Abstract Generative Pre-trained Transformer (GPT) models have exhibited exciting progress
in their capabilities, capturing the interest of practitioners and the public alike. Yet, while the …

Gptfuzzer: Red teaming large language models with auto-generated jailbreak prompts

J Yu, X Lin, Z Yu, X Xing - arXiv preprint arXiv:2309.10253, 2023 - arxiv.org
Large language models (LLMs) have recently experienced tremendous popularity and are
widely used from casual conversations to AI-driven programming. However, despite their …

Trustllm: Trustworthiness in large language models

Y Huang, L Sun, H Wang, S Wu, Q Zhang, Y Li… - arXiv preprint arXiv …, 2024 - arxiv.org
Large language models (LLMs), exemplified by ChatGPT, have gained considerable
attention for their excellent natural language processing capabilities. Nonetheless, these …

Open problems and fundamental limitations of reinforcement learning from human feedback

S Casper, X Davies, C Shi, TK Gilbert… - arXiv preprint arXiv …, 2023 - arxiv.org
Reinforcement learning from human feedback (RLHF) is a technique for training AI systems
to align with human goals. RLHF has emerged as the central method used to finetune state …

Exploiting programmatic behavior of llms: Dual-use through standard security attacks

D Kang, X Li, I Stoica, C Guestrin… - 2024 IEEE Security …, 2024 - ieeexplore.ieee.org
Recent advances in instruction-following large language models (LLMs) have led to
dramatic improvements in a range of NLP tasks. Unfortunately, we find that the same …

Large language models cannot self-correct reasoning yet

J Huang, X Chen, S Mishra, HS Zheng, AW Yu… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) have emerged as a groundbreaking technology with their
unparalleled text generation capabilities across various applications. Nevertheless …