Distributed artificial intelligence empowered by end-edge-cloud computing: A survey
As the computing paradigm shifts from cloud computing to end-edge-cloud computing, it
also supports artificial intelligence evolving from a centralized manner to a distributed one …
also supports artificial intelligence evolving from a centralized manner to a distributed one …
A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions
The past four years have witnessed the rapid development of federated learning (FL).
However, new privacy concerns have also emerged during the aggregation of the …
However, new privacy concerns have also emerged during the aggregation of the …
Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing
To process and transfer large amounts of data in emerging wireless services, it has become
increasingly appealing to exploit distributed data communication and learning. Specifically …
increasingly appealing to exploit distributed data communication and learning. Specifically …
Federated learning for internet of things: A comprehensive survey
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …
A survey on federated learning for resource-constrained IoT devices
Federated learning (FL) is a distributed machine learning strategy that generates a global
model by learning from multiple decentralized edge clients. FL enables on-device training …
model by learning from multiple decentralized edge clients. FL enables on-device training …
Federated learning meets blockchain in edge computing: Opportunities and challenges
Mobile-edge computing (MEC) has been envisioned as a promising paradigm to handle the
massive volume of data generated from ubiquitous mobile devices for enabling intelligent …
massive volume of data generated from ubiquitous mobile devices for enabling intelligent …
Federated learning for internet of things: Recent advances, taxonomy, and open challenges
The Internet of Things (IoT) will be ripe for the deployment of novel machine learning
algorithm for both network and application management. However, given the presence of …
algorithm for both network and application management. However, given the presence of …
Privacy and robustness in federated learning: Attacks and defenses
As data are increasingly being stored in different silos and societies becoming more aware
of data privacy issues, the traditional centralized training of artificial intelligence (AI) models …
of data privacy issues, the traditional centralized training of artificial intelligence (AI) models …
Federated learning for cybersecurity: Concepts, challenges, and future directions
M Alazab, SP RM, M Parimala… - IEEE Transactions …, 2021 - ieeexplore.ieee.org
Federated learning (FL) is a recent development in artificial intelligence, which is typically
based on the concept of decentralized data. As cyberattacks are frequently happening in the …
based on the concept of decentralized data. As cyberattacks are frequently happening in the …