Machine learning for synthetic data generation: a review
Machine learning heavily relies on data, but real-world applications often encounter various
data-related issues. These include data of poor quality, insufficient data points leading to …
data-related issues. These include data of poor quality, insufficient data points leading to …
Empowering things with intelligence: a survey of the progress, challenges, and opportunities in artificial intelligence of things
In the Internet-of-Things (IoT) era, billions of sensors and devices collect and process data
from the environment, transmit them to cloud centers, and receive feedback via the Internet …
from the environment, transmit them to cloud centers, and receive feedback via the Internet …
Rethinking spatial invariance of convolutional networks for object counting
Previous work generally believes that improving the spatial invariance of convolutional
networks is the key to object counting. However, after verifying several mainstream counting …
networks is the key to object counting. However, after verifying several mainstream counting …
Distribution matching for crowd counting
In crowd counting, each training image contains multiple people, where each person is
annotated by a dot. Existing crowd counting methods need to use a Gaussian to smooth …
annotated by a dot. Existing crowd counting methods need to use a Gaussian to smooth …
Survey on synthetic data generation, evaluation methods and GANs
A Figueira, B Vaz - Mathematics, 2022 - mdpi.com
Synthetic data consists of artificially generated data. When data are scarce, or of poor
quality, synthetic data can be used, for example, to improve the performance of machine …
quality, synthetic data can be used, for example, to improve the performance of machine …
A generalized loss function for crowd counting and localization
Previous work shows that a better density map representation can improve the performance
of crowd counting. In this paper, we investigate learning the density map representation …
of crowd counting. In this paper, we investigate learning the density map representation …
[图书][B] Synthetic data for deep learning
SI Nikolenko - 2021 - Springer
You are holding in your hands… oh, come on, who holds books like this in their hands
anymore? Anyway, you are reading this, and it means that I have managed to release one of …
anymore? Anyway, you are reading this, and it means that I have managed to release one of …
NWPU-crowd: A large-scale benchmark for crowd counting and localization
In the last decade, crowd counting and localization attract much attention of researchers due
to its wide-spread applications, including crowd monitoring, public safety, space design, etc …
to its wide-spread applications, including crowd monitoring, public safety, space design, etc …
Backbones-review: Feature extraction networks for deep learning and deep reinforcement learning approaches
To understand the real world using various types of data, Artificial Intelligence (AI) is the
most used technique nowadays. While finding the pattern within the analyzed data …
most used technique nowadays. While finding the pattern within the analyzed data …
An end-to-end transformer model for crowd localization
Crowd localization, predicting head positions, is a more practical and high-level task than
simply counting. Existing methods employ pseudo-bounding boxes or pre-designed …
simply counting. Existing methods employ pseudo-bounding boxes or pre-designed …