GAN-based anomaly detection: A review

X Xia, X Pan, N Li, X He, L Ma, X Zhang, N Ding - Neurocomputing, 2022 - Elsevier
Supervised learning algorithms have shown limited use in the field of anomaly detection due
to the unpredictability and difficulty in acquiring abnormal samples. In recent years …

Causal reasoning meets visual representation learning: A prospective study

Y Liu, YS Wei, H Yan, GB Li, L Lin - Machine Intelligence Research, 2022 - Springer
Visual representation learning is ubiquitous in various real-world applications, including
visual comprehension, video understanding, multi-modal analysis, human-computer …

Generalized out-of-distribution detection: A survey

J Yang, K Zhou, Y Li, Z Liu - International Journal of Computer Vision, 2024 - Springer
Abstract Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of
machine learning systems. For instance, in autonomous driving, we would like the driving …

A unified survey on anomaly, novelty, open-set, and out-of-distribution detection: Solutions and future challenges

M Salehi, H Mirzaei, D Hendrycks, Y Li… - arXiv preprint arXiv …, 2021 - arxiv.org
Machine learning models often encounter samples that are diverged from the training
distribution. Failure to recognize an out-of-distribution (OOD) sample, and consequently …

Msdn: Mutually semantic distillation network for zero-shot learning

S Chen, Z Hong, GS Xie, W Yang… - Proceedings of the …, 2022 - openaccess.thecvf.com
The key challenge of zero-shot learning (ZSL) is how to infer the latent semantic knowledge
between visual and attribute features on seen classes, and thus achieving a desirable …

Counterfactual vqa: A cause-effect look at language bias

Y Niu, K Tang, H Zhang, Z Lu… - Proceedings of the …, 2021 - openaccess.thecvf.com
Recent VQA models may tend to rely on language bias as a shortcut and thus fail to
sufficiently learn the multi-modal knowledge from both vision and language. In this paper …

Improving zero-shot generalization for clip with synthesized prompts

Z Wang, J Liang, R He, N Xu… - Proceedings of the …, 2023 - openaccess.thecvf.com
With the growing interest in pretrained vision-language models like CLIP, recent research
has focused on adapting these models to downstream tasks. Despite achieving promising …

Catching both gray and black swans: Open-set supervised anomaly detection

C Ding, G Pang, C Shen - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Despite most existing anomaly detection studies assume the availability of normal training
samples only, a few labeled anomaly examples are often available in many real-world …

Transzero: Attribute-guided transformer for zero-shot learning

S Chen, Z Hong, Y Liu, GS Xie, B Sun, H Li… - Proceedings of the …, 2022 - ojs.aaai.org
Zero-shot learning (ZSL) aims to recognize novel classes by transferring semantic
knowledge from seen classes to unseen ones. Semantic knowledge is learned from attribute …

Interventional video grounding with dual contrastive learning

G Nan, R Qiao, Y Xiao, J Liu, S Leng… - Proceedings of the …, 2021 - openaccess.thecvf.com
Video grounding aims to localize a moment from an untrimmed video for a given textual
query. Existing approaches focus more on the alignment of visual and language stimuli with …