Combustion machine learning: Principles, progress and prospects
Progress in combustion science and engineering has led to the generation of large amounts
of data from large-scale simulations, high-resolution experiments, and sensors. This corpus …
of data from large-scale simulations, high-resolution experiments, and sensors. This corpus …
Enhancing computational fluid dynamics with machine learning
R Vinuesa, SL Brunton - Nature Computational Science, 2022 - nature.com
Abstract Machine learning is rapidly becoming a core technology for scientific computing,
with numerous opportunities to advance the field of computational fluid dynamics. Here we …
with numerous opportunities to advance the field of computational fluid dynamics. Here we …
Physics-Informed Residual Network (PIResNet) for rolling element bearing fault diagnostics
Various deep learning methodologies have recently been developed for machine condition
monitoring recently, and they have achieved impressive success in bearing fault …
monitoring recently, and they have achieved impressive success in bearing fault …
Physics‐informed neural networks (PINNs) for wave propagation and full waveform inversions
We propose a new approach to the solution of the wave propagation and full waveform
inversions (FWIs) based on a recent advance in deep learning called physics‐informed …
inversions (FWIs) based on a recent advance in deep learning called physics‐informed …
Digital twin: Values, challenges and enablers from a modeling perspective
Digital twin can be defined as a virtual representation of a physical asset enabled through
data and simulators for real-time prediction, optimization, monitoring, controlling, and …
data and simulators for real-time prediction, optimization, monitoring, controlling, and …
[PDF][PDF] Integrating physics-based modeling with machine learning: A survey
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …
require novel methodologies that are able to integrate traditional physics-based modeling …
Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors
Artificial intelligence (AI), machine learning (ML), and data science are leading to a
promising transformative paradigm. ML, especially deep learning and physics-informed ML …
promising transformative paradigm. ML, especially deep learning and physics-informed ML …
Informed machine learning–a taxonomy and survey of integrating prior knowledge into learning systems
Despite its great success, machine learning can have its limits when dealing with insufficient
training data. A potential solution is the additional integration of prior knowledge into the …
training data. A potential solution is the additional integration of prior knowledge into the …
Integrating scientific knowledge with machine learning for engineering and environmental systems
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …
require novel methodologies that are able to integrate traditional physics-based modeling …
Turbulence modeling in the age of data
Data from experiments and direct simulations of turbulence have historically been used to
calibrate simple engineering models such as those based on the Reynolds-averaged Navier …
calibrate simple engineering models such as those based on the Reynolds-averaged Navier …