A comprehensive survey on local differential privacy

X Xiong, S Liu, D Li, Z Cai, X Niu - Security and Communication …, 2020 - Wiley Online Library
With the advent of the era of big data, privacy issues have been becoming a hot topic in
public. Local differential privacy (LDP) is a state‐of‐the‐art privacy preservation technique …

Advances and open problems in federated learning

P Kairouz, HB McMahan, B Avent… - … and trends® in …, 2021 - nowpublishers.com
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …

The distributed discrete gaussian mechanism for federated learning with secure aggregation

P Kairouz, Z Liu, T Steinke - International Conference on …, 2021 - proceedings.mlr.press
We consider training models on private data that are distributed across user devices. To
ensure privacy, we add on-device noise and use secure aggregation so that only the noisy …

Shuffled model of differential privacy in federated learning

A Girgis, D Data, S Diggavi… - International …, 2021 - proceedings.mlr.press
We consider a distributed empirical risk minimization (ERM) optimization problem with
communication efficiency and privacy requirements, motivated by the federated learning …

Hiding among the clones: A simple and nearly optimal analysis of privacy amplification by shuffling

V Feldman, A McMillan, K Talwar - 2021 IEEE 62nd Annual …, 2022 - ieeexplore.ieee.org
Recent work of Erlingsson, Feldman, Mironov, Raghunathan, Talwar, and Thakurta 1
demonstrates that random shuffling amplifies differential privacy guarantees of locally …

The fundamental price of secure aggregation in differentially private federated learning

WN Chen, CAC Choo, P Kairouz… - … on Machine Learning, 2022 - proceedings.mlr.press
We consider the problem of training a $ d $ dimensional model with distributed differential
privacy (DP) where secure aggregation (SecAgg) is used to ensure that the server only sees …

Scenario-based Adaptations of Differential Privacy: A Technical Survey

Y Zhao, JT Du, J Chen - ACM Computing Surveys, 2024 - dl.acm.org
Differential privacy has been a de facto privacy standard in defining privacy and handling
privacy preservation. It has had great success in scenarios of local data privacy and …

Privacy amplification via compression: Achieving the optimal privacy-accuracy-communication trade-off in distributed mean estimation

WN Chen, D Song, A Ozgur… - Advances in Neural …, 2024 - proceedings.neurips.cc
Privacy and communication constraints are two major bottlenecks in federated learning (FL)
and analytics (FA). We study the optimal accuracy of mean and frequency estimation …

Private summation in the multi-message shuffle model

B Balle, J Bell, A Gascón, K Nissim - Proceedings of the 2020 ACM …, 2020 - dl.acm.org
The shuffle model of differential privacy (Erlingsson et al. SODA 2019; Cheu et al.
EUROCRYPT 2019) and its close relative encode-shuffle-analyze (Bittau et al. SOSP 2017) …

Flame: Differentially private federated learning in the shuffle model

R Liu, Y Cao, H Chen, R Guo… - Proceedings of the AAAI …, 2021 - ojs.aaai.org
Federated Learning (FL) is a promising machine learning paradigm that enables the
analyzer to train a model without collecting users' raw data. To ensure users' privacy …