PEAR: Positional-encoded Asynchronous Autoregression for satellite anomaly detection

P Liu, L Chen, H Zhang, Y Zhang, C Liu, C Li… - Pattern Recognition …, 2023 - Elsevier
This paper proposes a Positional-Encoded Asynchronous AutoRegression (PEAR) method
for satellite anomaly detection. We empirically observe that a single classification model can …

Realigned softmax warping for deep metric learning

MG DeMoor, JJ Prevost - arXiv preprint arXiv:2408.15656, 2024 - arxiv.org
Deep Metric Learning (DML) loss functions traditionally aim to control the forces of
separability and compactness within an embedding space so that the same class data …

Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning

L Ren, C Chen, L Wang, K Hua - arXiv preprint arXiv:2402.02340, 2024 - arxiv.org
Deep Metric Learning (DML) has long attracted the attention of the machine learning
community as a key objective. Existing solutions concentrate on fine-tuning the pre-trained …

Anti-Collapse Loss for Deep Metric Learning

X Jiang, Y Yao, X Dai, F Shen, L Nie… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Deep metric learning (DML) aims to learn a discriminative high-dimensional embedding
space for downstream tasks like classification, clustering, and retrieval. Prior literature …

Globally Correlation-Aware Hard Negative Generation

W Peng, H Huang, T Chen, Q Ke, G Dai… - International Journal of …, 2024 - Springer
Hard negative generation aims to generate informative negative samples that help to
determine the decision boundaries and thus facilitate advancing deep metric learning …

Introspective deep metric learning

C Wang, W Zheng, Z Zhu, J Zhou… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
This paper proposes an introspective deep metric learning (IDML) framework for uncertainty-
aware comparisons of images. Conventional deep metric learning methods focus on …

Potential Field Based Deep Metric Learning

S Bhatnagar, N Ahuja - arXiv preprint arXiv:2405.18560, 2024 - arxiv.org
Deep metric learning (DML) involves training a network to learn a semantically meaningful
representation space. Many current approaches mine n-tuples of examples and model …

Integrating Deep Metric Learning with Coreset for Active Learning in 3D Segmentation

AM Vepa, Z Yang, A Choi, J Joo, F Scalzo… - arXiv preprint arXiv …, 2024 - arxiv.org
Deep learning has seen remarkable advancements in machine learning, yet it often
demands extensive annotated data. Tasks like 3D semantic segmentation impose a …

DVF: Advancing Robust and Accurate Fine-Grained Image Retrieval with Retrieval Guidelines

X Jiang, H Tang, R Yan, J Tang, Z Li - arXiv preprint arXiv:2404.15771, 2024 - arxiv.org
Fine-grained image retrieval (FGIR) is to learn visual representations that distinguish
visually similar objects while maintaining generalization. Existing methods propose to …

Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric

X Jiang, Y Yao, X Dai, F Shen, XS Hua… - arXiv preprint arXiv …, 2024 - arxiv.org
Deep metric learning (DML) aims to learn a discriminative high-dimensional embedding
space for downstream tasks like classification, clustering, and retrieval. Prior literature …