Enhancing computational fluid dynamics with machine learning

R Vinuesa, SL Brunton - Nature Computational Science, 2022 - nature.com
Abstract Machine learning is rapidly becoming a core technology for scientific computing,
with numerous opportunities to advance the field of computational fluid dynamics. Here we …

Promising directions of machine learning for partial differential equations

SL Brunton, JN Kutz - Nature Computational Science, 2024 - nature.com
Partial differential equations (PDEs) are among the most universal and parsimonious
descriptions of natural physical laws, capturing a rich variety of phenomenology and …

Modern Koopman theory for dynamical systems

SL Brunton, M Budišić, E Kaiser, JN Kutz - arXiv preprint arXiv:2102.12086, 2021 - arxiv.org
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …

Applications of physics-informed neural networks in power systems-a review

B Huang, J Wang - IEEE Transactions on Power Systems, 2022 - ieeexplore.ieee.org
The advances of deep learning (DL) techniques bring new opportunities to numerous
intractable tasks in power systems (PSs). Nevertheless, the extension of the application of …

[PDF][PDF] Integrating physics-based modeling with machine learning: A survey

J Willard, X Jia, S Xu, M Steinbach… - arXiv preprint arXiv …, 2020 - beiyulincs.github.io
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …

[图书][B] Data-driven science and engineering: Machine learning, dynamical systems, and control

SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …

Koopa: Learning non-stationary time series dynamics with koopman predictors

Y Liu, C Li, J Wang, M Long - Advances in neural …, 2023 - proceedings.neurips.cc
Real-world time series are characterized by intrinsic non-stationarity that poses a principal
challenge for deep forecasting models. While previous models suffer from complicated …

Integrating scientific knowledge with machine learning for engineering and environmental systems

J Willard, X Jia, S Xu, M Steinbach, V Kumar - ACM Computing Surveys, 2022 - dl.acm.org
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …

Deep learning for universal linear embeddings of nonlinear dynamics

B Lusch, JN Kutz, SL Brunton - Nature communications, 2018 - nature.com
Identifying coordinate transformations that make strongly nonlinear dynamics approximately
linear has the potential to enable nonlinear prediction, estimation, and control using linear …

Modal analysis of fluid flows: Applications and outlook

K Taira, MS Hemati, SL Brunton, Y Sun, K Duraisamy… - AIAA journal, 2020 - arc.aiaa.org
THE field of fluid mechanics involves a range of rich and vibrant problems with complex
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …