Enhancing computational fluid dynamics with machine learning
R Vinuesa, SL Brunton - Nature Computational Science, 2022 - nature.com
Abstract Machine learning is rapidly becoming a core technology for scientific computing,
with numerous opportunities to advance the field of computational fluid dynamics. Here we …
with numerous opportunities to advance the field of computational fluid dynamics. Here we …
Promising directions of machine learning for partial differential equations
SL Brunton, JN Kutz - Nature Computational Science, 2024 - nature.com
Partial differential equations (PDEs) are among the most universal and parsimonious
descriptions of natural physical laws, capturing a rich variety of phenomenology and …
descriptions of natural physical laws, capturing a rich variety of phenomenology and …
Modern Koopman theory for dynamical systems
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …
algorithms emerging from modern computing and data science. First-principles derivations …
Applications of physics-informed neural networks in power systems-a review
The advances of deep learning (DL) techniques bring new opportunities to numerous
intractable tasks in power systems (PSs). Nevertheless, the extension of the application of …
intractable tasks in power systems (PSs). Nevertheless, the extension of the application of …
[PDF][PDF] Integrating physics-based modeling with machine learning: A survey
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …
require novel methodologies that are able to integrate traditional physics-based modeling …
[图书][B] Data-driven science and engineering: Machine learning, dynamical systems, and control
SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
Koopa: Learning non-stationary time series dynamics with koopman predictors
Real-world time series are characterized by intrinsic non-stationarity that poses a principal
challenge for deep forecasting models. While previous models suffer from complicated …
challenge for deep forecasting models. While previous models suffer from complicated …
Integrating scientific knowledge with machine learning for engineering and environmental systems
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …
require novel methodologies that are able to integrate traditional physics-based modeling …
Deep learning for universal linear embeddings of nonlinear dynamics
Identifying coordinate transformations that make strongly nonlinear dynamics approximately
linear has the potential to enable nonlinear prediction, estimation, and control using linear …
linear has the potential to enable nonlinear prediction, estimation, and control using linear …
Modal analysis of fluid flows: Applications and outlook
THE field of fluid mechanics involves a range of rich and vibrant problems with complex
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …