On centres of relatively free associative algebras with a Lie nilpotency identity
AV Grishin, SV Pchelintsev - Sbornik: Mathematics, 2015 - iopscience.iop.org
We study central polynomials of a relatively free Lie nilpotent algebra $ F^{(n)} $ of degree $
n $. We prove a product theorem, which generalizes the well-known results of Latyshev and …
n $. We prove a product theorem, which generalizes the well-known results of Latyshev and …
О центрах относительно свободных ассоциативных алгебр с тождеством лиевой нильпотентности
АВ Гришин, СВ Пчелинцев - Математический сборник, 2015 - mathnet.ru
Изучаются центральные многочлены относительно свободной лиево нильпотентной
степени n алгебры F (n). Доказана теорема о произведении, обобщающая известные …
степени n алгебры F (n). Доказана теорема о произведении, обобщающая известные …
[HTML][HTML] The additive group of a Lie nilpotent associative ring
A Krasilnikov - Journal of Algebra, 2013 - Elsevier
Let Z< X> be the free unital associative ring freely generated by an infinite countable set
X={x 1, x 2,…}. Define a left-normed commutator [x 1, x 2,…, xn] by [a, b]= ab− ba,[a, b, c]=[[a …
X={x 1, x 2,…}. Define a left-normed commutator [x 1, x 2,…, xn] by [a, b]= ab− ba,[a, b, c]=[[a …
Lower central series of a free associative algebra over the integers and finite fields
Consider the free algebra An generated over Q by n generators x1,…, xn. Interesting objects
attached to A= An are members of its lower central series, Li= Li (A), defined inductively by …
attached to A= An are members of its lower central series, Li= Li (A), defined inductively by …
[HTML][HTML] Lie structure of truncated symmetric Poisson algebras
IZM Alves, V Petrogradsky - Journal of Algebra, 2017 - Elsevier
The paper naturally continues series of works on identical relations of group rings,
enveloping algebras, and other related algebraic structures. Let L be a Lie algebra over a …
enveloping algebras, and other related algebraic structures. Let L be a Lie algebra over a …
[HTML][HTML] Products of commutators in a Lie nilpotent associative algebra
G Deryabina, A Krasilnikov - Journal of Algebra, 2017 - Elsevier
Let F be a field and let F< X> be the free unital associative algebra over F freely generated
by an infinite countable set X={x 1, x 2,…}. Define a left-normed commutator [a 1, a 2,…, an] …
by an infinite countable set X={x 1, x 2,…}. Define a left-normed commutator [a 1, a 2,…, an] …
An algebro-geometric construction of lower central series of associative algebras
D Jordan, H Orem - International Mathematics Research Notices, 2015 - academic.oup.com
The lower central series invariants M k of an associative algebra A are the two-sided ideals
generated by k-fold iterated commutators; the M k provide a filtration of A. We study the …
generated by k-fold iterated commutators; the M k provide a filtration of A. We study the …
Products of commutator ideals of some Lie-admissible algebras
I Kaygorodov, F Mashurov, TG Nam… - Acta Mathematica Sinica …, 2024 - Springer
In this article, we mainly study the products of commutator ideals of Lie-admissible algebras
such as Novikov algebras, bicommutative algebras, and assosymmetric algebras. More …
such as Novikov algebras, bicommutative algebras, and assosymmetric algebras. More …
Some products of commutators in an associative ring
G Deryabina, A Krasilnikov - International Journal of Algebra and …, 2019 - World Scientific
Let A be a unital associative ring and let T (k) be the two-sided ideal of A generated by all
commutators [a 1, a 2,…, ak](ai∈ A) where [a 1, a 2]= a 1 a 2− a 2 a 1,[a 1,…, ak− 1, ak]=[[a …
commutators [a 1, a 2,…, ak](ai∈ A) where [a 1, a 2]= a 1 a 2− a 2 a 1,[a 1,…, ak− 1, ak]=[[a …
[HTML][HTML] The torsion subgroup of the additive group of a Lie nilpotent associative ring of class 3
G Deryabina, A Krasilnikov - Journal of Algebra, 2015 - Elsevier
Let Z< X> be the free unital associative ring freely generated by an infinite countable set
X={x 1, x 2,…}. Define a left-normed commutator [a 1, a 2,…, an] inductively by [a, b]= ab …
X={x 1, x 2,…}. Define a left-normed commutator [a 1, a 2,…, an] inductively by [a, b]= ab …