A review of generalized zero-shot learning methods

F Pourpanah, M Abdar, Y Luo, X Zhou… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples
under the condition that some output classes are unknown during supervised learning. To …

A review on multimodal zero‐shot learning

W Cao, Y Wu, Y Sun, H Zhang, J Ren… - … : Data Mining and …, 2023 - Wiley Online Library
Multimodal learning provides a path to fully utilize all types of information related to the
modeling target to provide the model with a global vision. Zero‐shot learning (ZSL) is a …

Contrastive embedding for generalized zero-shot learning

Z Han, Z Fu, S Chen, J Yang - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Generalized zero-shot learning (GZSL) aims to recognize objects from both seen and
unseen classes, when only the labeled examples from seen classes are provided. Recent …

Free: Feature refinement for generalized zero-shot learning

S Chen, W Wang, B Xia, Q Peng… - Proceedings of the …, 2021 - openaccess.thecvf.com
Generalized zero-shot learning (GZSL) has achieved significant progress, with many efforts
dedicated to overcoming the problems of visual-semantic domain gaps and seen-unseen …

ZeroNAS: Differentiable generative adversarial networks search for zero-shot learning

C Yan, X Chang, Z Li, W Guan, Z Ge… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
In recent years, remarkable progress in zero-shot learning (ZSL) has been achieved by
generative adversarial networks (GAN). To compensate for the lack of training samples in …

Msdn: Mutually semantic distillation network for zero-shot learning

S Chen, Z Hong, GS Xie, W Yang… - Proceedings of the …, 2022 - openaccess.thecvf.com
The key challenge of zero-shot learning (ZSL) is how to infer the latent semantic knowledge
between visual and attribute features on seen classes, and thus achieving a desirable …

Improving zero-shot generalization for clip with synthesized prompts

Z Wang, J Liang, R He, N Xu… - Proceedings of the …, 2023 - openaccess.thecvf.com
With the growing interest in pretrained vision-language models like CLIP, recent research
has focused on adapting these models to downstream tasks. Despite achieving promising …

Counterfactual zero-shot and open-set visual recognition

Z Yue, T Wang, Q Sun, XS Hua… - Proceedings of the …, 2021 - openaccess.thecvf.com
We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-
Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by …

Attribute prototype network for zero-shot learning

W Xu, Y Xian, J Wang, B Schiele… - Advances in Neural …, 2020 - proceedings.neurips.cc
From the beginning of zero-shot learning research, visual attributes have been shown to
play an important role. In order to better transfer attribute-based knowledge from known to …

Hsva: Hierarchical semantic-visual adaptation for zero-shot learning

S Chen, G Xie, Y Liu, Q Peng, B Sun… - Advances in …, 2021 - proceedings.neurips.cc
Zero-shot learning (ZSL) tackles the unseen class recognition problem, transferring
semantic knowledge from seen classes to unseen ones. Typically, to guarantee desirable …