A review of generalized zero-shot learning methods
Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples
under the condition that some output classes are unknown during supervised learning. To …
under the condition that some output classes are unknown during supervised learning. To …
A review on multimodal zero‐shot learning
Multimodal learning provides a path to fully utilize all types of information related to the
modeling target to provide the model with a global vision. Zero‐shot learning (ZSL) is a …
modeling target to provide the model with a global vision. Zero‐shot learning (ZSL) is a …
Contrastive embedding for generalized zero-shot learning
Generalized zero-shot learning (GZSL) aims to recognize objects from both seen and
unseen classes, when only the labeled examples from seen classes are provided. Recent …
unseen classes, when only the labeled examples from seen classes are provided. Recent …
Free: Feature refinement for generalized zero-shot learning
Generalized zero-shot learning (GZSL) has achieved significant progress, with many efforts
dedicated to overcoming the problems of visual-semantic domain gaps and seen-unseen …
dedicated to overcoming the problems of visual-semantic domain gaps and seen-unseen …
ZeroNAS: Differentiable generative adversarial networks search for zero-shot learning
In recent years, remarkable progress in zero-shot learning (ZSL) has been achieved by
generative adversarial networks (GAN). To compensate for the lack of training samples in …
generative adversarial networks (GAN). To compensate for the lack of training samples in …
Msdn: Mutually semantic distillation network for zero-shot learning
The key challenge of zero-shot learning (ZSL) is how to infer the latent semantic knowledge
between visual and attribute features on seen classes, and thus achieving a desirable …
between visual and attribute features on seen classes, and thus achieving a desirable …
Improving zero-shot generalization for clip with synthesized prompts
With the growing interest in pretrained vision-language models like CLIP, recent research
has focused on adapting these models to downstream tasks. Despite achieving promising …
has focused on adapting these models to downstream tasks. Despite achieving promising …
Counterfactual zero-shot and open-set visual recognition
We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-
Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by …
Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by …
Attribute prototype network for zero-shot learning
From the beginning of zero-shot learning research, visual attributes have been shown to
play an important role. In order to better transfer attribute-based knowledge from known to …
play an important role. In order to better transfer attribute-based knowledge from known to …
Hsva: Hierarchical semantic-visual adaptation for zero-shot learning
Zero-shot learning (ZSL) tackles the unseen class recognition problem, transferring
semantic knowledge from seen classes to unseen ones. Typically, to guarantee desirable …
semantic knowledge from seen classes to unseen ones. Typically, to guarantee desirable …