A survey on efficient convolutional neural networks and hardware acceleration
Over the past decade, deep-learning-based representations have demonstrated remarkable
performance in academia and industry. The learning capability of convolutional neural …
performance in academia and industry. The learning capability of convolutional neural …
Model compression and hardware acceleration for neural networks: A comprehensive survey
Domain-specific hardware is becoming a promising topic in the backdrop of improvement
slow down for general-purpose processors due to the foreseeable end of Moore's Law …
slow down for general-purpose processors due to the foreseeable end of Moore's Law …
Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks
The growing energy and performance costs of deep learning have driven the community to
reduce the size of neural networks by selectively pruning components. Similarly to their …
reduce the size of neural networks by selectively pruning components. Similarly to their …
Pruning and quantization for deep neural network acceleration: A survey
T Liang, J Glossner, L Wang, S Shi, X Zhang - Neurocomputing, 2021 - Elsevier
Deep neural networks have been applied in many applications exhibiting extraordinary
abilities in the field of computer vision. However, complex network architectures challenge …
abilities in the field of computer vision. However, complex network architectures challenge …
Spatten: Efficient sparse attention architecture with cascade token and head pruning
The attention mechanism is becoming increasingly popular in Natural Language Processing
(NLP) applications, showing superior performance than convolutional and recurrent …
(NLP) applications, showing superior performance than convolutional and recurrent …
Chasing carbon: The elusive environmental footprint of computing
Given recent algorithm, software, and hardware innovation, computing has enabled a
plethora of new applications. As computing becomes increasingly ubiquitous, however, so …
plethora of new applications. As computing becomes increasingly ubiquitous, however, so …
Efficient acceleration of deep learning inference on resource-constrained edge devices: A review
Successful integration of deep neural networks (DNNs) or deep learning (DL) has resulted
in breakthroughs in many areas. However, deploying these highly accurate models for data …
in breakthroughs in many areas. However, deploying these highly accurate models for data …
Sigma: A sparse and irregular gemm accelerator with flexible interconnects for dnn training
The advent of Deep Learning (DL) has radically transformed the computing industry across
the entire spectrum from algorithms to circuits. As myriad application domains embrace DL, it …
the entire spectrum from algorithms to circuits. As myriad application domains embrace DL, it …
Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile devices
A recent trend in deep neural network (DNN) development is to extend the reach of deep
learning applications to platforms that are more resource and energy-constrained, eg …
learning applications to platforms that are more resource and energy-constrained, eg …
Edge computing enabled video segmentation for real-time traffic monitoring in internet of vehicles
Abstract In the Internet of Things enabled intelligent transportation systems, a huge amount
of vehicle video data has been generated and real-time and accurate video analysis are …
of vehicle video data has been generated and real-time and accurate video analysis are …