Geometric constrained variational calculus I: Piecewise smooth extremals

E Massa, D Bruno, G Luria, E Pagani - International Journal of …, 2015 - World Scientific
A geometric setup for constrained variational calculus is presented. The analysis deals with
the study of the extremals of an action functional defined on piecewise differentiable curves …

Geometric constrained variational calculus. II: The second variation (Part I)

E Massa, D Bruno, G Luria, E Pagani - International Journal of …, 2016 - World Scientific
Within the geometrical framework developed in [Geometric constrained variational calculus.
I: Piecewise smooth extremals, Int. J. Geom. Methods Mod. Phys. 12 (2015) 1550061], the …

Constrained variational calculus: the second variation (part I)

E Massa, D Bruno, G Luria, E Pagani - arXiv preprint arXiv:1006.3632, 2010 - arxiv.org
Within the geometrical framework developed in arXiv: 0705.2362, the problem of minimality
for constrained calculus of variations is analysed among the class of differentiable curves. A …