[图书][B] Algebraic design theory
W De Launey, DL Flannery - 2011 - books.google.com
Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete
problems, with the Hadamard conjecture being a prime example. It has become clear that …
problems, with the Hadamard conjecture being a prime example. It has become clear that …
Recent progress in algebraic design theory
Q Xiang - Finite Fields and Their Applications, 2005 - Elsevier
Recent progress in algebraic design theory Page 1 Finite Fields and Their Applications 11 (2005)
622–653 http://www.elsevier.com/locate/ffa PG1- Recent progress in algebraic design theory …
622–653 http://www.elsevier.com/locate/ffa PG1- Recent progress in algebraic design theory …
Symmetric Bush-Type Hadamard Matrices of Order Exist for All Odd m
M Muzychuk, Q Xiang - Proceedings of the American Mathematical Society, 2006 - JSTOR
Symmetric Bush-Type Hadamard Matrices of Order <tex-math>$4m^4$</tex-math> Exist for
All Odd m Page 1 PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume …
All Odd m Page 1 PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume …
Switching of edges in strongly regular graphs I: A family of partial difference sets on 100 vertices
LK Jørgensen, M Klin - the electronic journal of combinatorics, 2003 - combinatorics.org
We present 15 new partial difference sets over 4 non-abelian groups of order 100 and 2 new
strongly regular graphs with intransitive automorphism groups. The strongly regular graphs …
strongly regular graphs with intransitive automorphism groups. The strongly regular graphs …
Self-dual Hadamard bent sequences
A new notion of bent sequence related to Hadamard matrices was introduced recently,
motivated by a security application (Solé, et al., 2021). The authors study the self-dual class …
motivated by a security application (Solé, et al., 2021). The authors study the self-dual class …
LCD codes from weighing matrices
Linear codes with complementary duals are linear codes whose intersection with their duals
are trivial, shortly named LCD codes. In this paper we outline a construction for LCD codes …
are trivial, shortly named LCD codes. In this paper we outline a construction for LCD codes …
Как гипотезе Адамара помочь стать теоремой. Часть 1
НА Балонин, МБ Сергеев - Информационно-управляющие …, 2018 - cyberleninka.ru
Введение: гипотеза Адамара о существовании специфических квадратных матриц
сформулирована не Адамаром, а математиками начала прошлого века. В середине …
сформулирована не Адамаром, а математиками начала прошлого века. В середине …
The existence of a Bush-type Hadamard matrix of order 324 and two new infinite classes of symmetric designs
Z Janko, H Kharaghani, VD Tonchev - Designs, Codes and Cryptography, 2001 - Springer
Abstract A symmetric 2-(324, 153, 72) design is constructed that admits a tactical
decomposition into 18 point and block classes of size 18 such that every point is in either 0 …
decomposition into 18 point and block classes of size 18 such that every point is in either 0 …
[HTML][HTML] Orbit matrices of Hadamard matrices and related codes
In this paper we introduce the notion of orbit matrices of Hadamard matrices with respect to
their permutation automorphism groups and show that under certain conditions these orbit …
their permutation automorphism groups and show that under certain conditions these orbit …
Как гипотезе Адамара помочь стать теоремой. Часть 2
НА Балонин, МБ Сергеев - Информационно-управляющие …, 2019 - cyberleninka.ru
Введение: гипотеза Адамара о существовании специфических квадратных матриц
сформулирована не Адамаром, а математиками начала прошлого века. В середине …
сформулирована не Адамаром, а математиками начала прошлого века. В середине …