Algorithmic fairness in artificial intelligence for medicine and healthcare

RJ Chen, JJ Wang, DFK Williamson, TY Chen… - Nature biomedical …, 2023 - nature.com
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …

A guide to machine learning for biologists

JG Greener, SM Kandathil, L Moffat… - Nature reviews Molecular …, 2022 - nature.com
The expanding scale and inherent complexity of biological data have encouraged a growing
use of machine learning in biology to build informative and predictive models of the …

[HTML][HTML] AI recognition of patient race in medical imaging: a modelling study

JW Gichoya, I Banerjee, AR Bhimireddy… - The Lancet Digital …, 2022 - thelancet.com
Background Previous studies in medical imaging have shown disparate abilities of artificial
intelligence (AI) to detect a person's race, yet there is no known correlation for race on …

On the opportunities and risks of foundation models

R Bommasani, DA Hudson, E Adeli, R Altman… - arXiv preprint arXiv …, 2021 - arxiv.org
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …

[HTML][HTML] The medical segmentation decathlon

M Antonelli, A Reinke, S Bakas, K Farahani… - Nature …, 2022 - nature.com
International challenges have become the de facto standard for comparative assessment of
image analysis algorithms. Although segmentation is the most widely investigated medical …

[HTML][HTML] Deep learning-enabled medical computer vision

A Esteva, K Chou, S Yeung, N Naik, A Madani… - NPJ digital …, 2021 - nature.com
A decade of unprecedented progress in artificial intelligence (AI) has demonstrated the
potential for many fields—including medicine—to benefit from the insights that AI techniques …

[HTML][HTML] A deep learning system for predicting time to progression of diabetic retinopathy

L Dai, B Sheng, T Chen, Q Wu, R Liu, C Cai, L Wu… - Nature Medicine, 2024 - nature.com
Diabetic retinopathy (DR) is the leading cause of preventable blindness worldwide. The risk
of DR progression is highly variable among different individuals, making it difficult to predict …

Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective

JPO Li, H Liu, DSJ Ting, S Jeon, RVP Chan… - Progress in retinal and …, 2021 - Elsevier
The simultaneous maturation of multiple digital and telecommunications technologies in
2020 has created an unprecedented opportunity for ophthalmology to adapt to new models …

[HTML][HTML] Secure, privacy-preserving and federated machine learning in medical imaging

GA Kaissis, MR Makowski, D Rückert… - Nature Machine …, 2020 - nature.com
The broad application of artificial intelligence techniques in medicine is currently hindered
by limited dataset availability for algorithm training and validation, due to the absence of …

Data-efficient and weakly supervised computational pathology on whole-slide images

MY Lu, DFK Williamson, TY Chen, RJ Chen… - Nature biomedical …, 2021 - nature.com
Deep-learning methods for computational pathology require either manual annotation of
gigapixel whole-slide images (WSIs) or large datasets of WSIs with slide-level labels and …