Ornstein–Uhlenbeck operators and semigroups

VI Bogachev - Russian Mathematical Surveys, 2018 - iopscience.iop.org
This survey gives an account of the state of the art of the theory of Ornstein–Uhlenbeck
operators and semigroups. The domains of definition and the spectra of such operators are …

User's guide to the fractional Laplacian and the method of semigroups

PR Stinga - Handbook of fractional calculus with applications, 2019 - degruyter.com
The method of semigroups is a unifying, widely applicable, general technique to formulate
and analyze fundamental aspects of fractional powers of operators L and their regularity …

[图书][B] Gaussian harmonic analysis

W Urbina-Romero - 2019 - Springer
Classical harmonic analysis dates back to the beginning of the nineteenth century and has
its roots in the study of Fourier series, the Fourier transform, and the development of tools …

Операторы и полугруппы Орнштейна–Уленбека

ВИ Богачев - Успехи математических наук, 2018 - mathnet.ru
Этот обзор посвящен современному состоянию теории операторов и полугрупп
Орнштейна–Уленбека, в том числе сравнительно недавним достижениям и открытым …

Pointwise convergence to initial data of heat and Laplace equations

G Garrigós, S Hartzstein, T Signes, J Torrea… - Transactions of the …, 2016 - ams.org
Let $ L $ be either the Hermite or the Ornstein-Uhlenbeck operator on $\mathbb {R}^ d $. We
find optimal integrability conditions on a function $ f $ for the existence of its heat and …

Lipschitz spaces adapted to Schrödinger operators and regularity properties

M De León-Contreras, JL Torrea - Revista Matemática Complutense, 2021 - Springer
Consider the Schrödinger operator L=-Δ+ VL=-Δ+ V in R^ n, n ≥ 3, R n, n≥ 3, where V is a
nonnegative potential satisfying a reverse Hölder condition of the type (1| B| ∫ _B V (y) …

Parabolic Hermite Lipschitz spaces: regularity of fractional operators

M De León-Contreras, JL Torrea - Mediterranean Journal of Mathematics, 2020 - Springer
We introduce a pointwise definition of Lipschitz (also called Hölder) spaces adapted to the
parabolic Hermite operator H= ∂ _t-Δ _x+| x|^ 2 H=∂ t-Δ x+| x| 2 on R^ n+ 1 R n+ 1. Also for …

Discrete Hölder spaces and their characterization via semigroups associated with the discrete Laplacian and kernel estimates

L Abadias, M De León-Contreras - Journal of Evolution Equations, 2022 - Springer
In this paper, we characterize the discrete Hölder spaces by means of the heat and Poisson
semigroups associated with the discrete Laplacian. These characterizations allow us to get …

A New Characterization of the Besov Spaces Associated with Hermite Operator

J Huang, H Mo - Frontiers of Mathematics, 2023 - Springer
Abstract Let H=− Δ+∣ x∣ 2 be a Hermite operator, where Δ is the Laplacian on ℝ n. In this
paper, we give a new characterization of the Besov space associated with Hermite operator …

A Calderón theorem for the poisson semigroups associated with the Ornstein–Uhlenbeck and Hermite operators

G Flores, B Viviani - Mathematische Annalen, 2023 - Springer
We prove that for solutions of the Ornstein–Uhlenbeck or Hermite equations on the upper
half-space, in the Poisson setting, the nontangential limits and nontangetial boundedness …