Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects

J Wang, M Bretz, MAA Dewan, MA Delavar - Science of The Total …, 2022 - Elsevier
Land-use and land-cover change (LULCC) are of importance in natural resource
management, environmental modelling and assessment, and agricultural production …

Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review

M Sheykhmousa, M Mahdianpari… - IEEE Journal of …, 2020 - ieeexplore.ieee.org
Several machine-learning algorithms have been proposed for remote sensing image
classification during the past two decades. Among these machine learning algorithms …

More diverse means better: Multimodal deep learning meets remote-sensing imagery classification

D Hong, L Gao, N Yokoya, J Yao… - … on Geoscience and …, 2020 - ieeexplore.ieee.org
Classification and identification of the materials lying over or beneath the earth's surface
have long been a fundamental but challenging research topic in geoscience and remote …

Rotation-invariant attention network for hyperspectral image classification

X Zheng, H Sun, X Lu, W Xie - IEEE Transactions on Image …, 2022 - ieeexplore.ieee.org
Hyperspectral image (HSI) classification refers to identifying land-cover categories of pixels
based on spectral signatures and spatial information of HSIs. In recent deep learning-based …

[HTML][HTML] Deep learning classifiers for hyperspectral imaging: A review

ME Paoletti, JM Haut, J Plaza, A Plaza - ISPRS Journal of Photogrammetry …, 2019 - Elsevier
Advances in computing technology have fostered the development of new and powerful
deep learning (DL) techniques, which have demonstrated promising results in a wide range …

Feature extraction for hyperspectral imagery: The evolution from shallow to deep: Overview and toolbox

B Rasti, D Hong, R Hang, P Ghamisi… - … and Remote Sensing …, 2020 - ieeexplore.ieee.org
Hyperspectral images (HSIs) provide detailed spectral information through hundreds of
(narrow) spectral channels (also known as dimensionality or bands), which can be used to …

Deep learning for image super-resolution: A survey

Z Wang, J Chen, SCH Hoi - IEEE transactions on pattern …, 2020 - ieeexplore.ieee.org
Image Super-Resolution (SR) is an important class of image processing techniqueso
enhance the resolution of images and videos in computer vision. Recent years have …

[PDF][PDF] 高光谱遥感影像分类研究进展

杜培军, 夏俊士, 薛朝辉, 谭琨, 苏红军, 鲍蕊 - 遥感学报, 2021 - ygxb.ac.cn
随着模式识别, 机器学习, 遥感技术等相关学科领域的发展, 高光谱遥感影像分类研究取得快速
进展. 本文系统总结和评述了当前高光谱遥感影像分类的相关研究进展, 在总结分类策略的基础 …

Degradation-aware unfolding half-shuffle transformer for spectral compressive imaging

Y Cai, J Lin, H Wang, X Yuan, H Ding… - Advances in …, 2022 - proceedings.neurips.cc
In coded aperture snapshot spectral compressive imaging (CASSI) systems, hyperspectral
image (HSI) reconstruction methods are employed to recover the spatial-spectral signal from …

Coarse-to-fine sparse transformer for hyperspectral image reconstruction

Y Cai, J Lin, X Hu, H Wang, X Yuan, Y Zhang… - European conference on …, 2022 - Springer
Many learning-based algorithms have been developed to solve the inverse problem of
coded aperture snapshot spectral imaging (CASSI). However, CNN-based methods show …