High‐resolution mapping of the global silicate weathering carbon sink and its long‐term changes

C Li, X Bai, Q Tan, G Luo, L Wu, F Chen… - Global Change …, 2022 - Wiley Online Library
Climatic and non‐climatic factors affect the chemical weathering of silicate rocks, which in
turn affects the CO2 concentration in the atmosphere on a long‐term scale. However, the …

Automatic regionalization of model parameters for hydrological models

M Feigl, S Thober, R Schweppe… - Water Resources …, 2022 - Wiley Online Library
Parameter estimation is one of the most challenging tasks in large‐scale distributed
modeling, because of the high dimensionality of the parameter space. Relating model …

Learning distributed parameters of land surface hydrologic models using a Generative Adversarial Network

R Sun, B Pan, Q Duan - Water Resources Research, 2024 - Wiley Online Library
Land surface hydrologic models adeptly capture crucial terrestrial processes with a high
level of spatial detail. Typically, these models incorporate numerous uncertain, spatially …

Wflow_sbm v0. 6.1, a spatially distributed hydrologic model: from global data to local applications

WJ van Verseveld, AH Weerts, M Visser… - Geoscientific Model …, 2022 - gmd.copernicus.org
The wflow_sbm hydrologic model, recently released by Deltares, as part of the Wflow. jl (v0.
6.1) modelling framework is being used to better understand and potentially address …

Machine learning for understanding inland water quantity, quality, and ecology

AP Appling, SK Oliver, JS Read, JM Sadler, J Zwart - 2022 - eartharxiv.org
This chapter provides an overview of machine learning models and their applications to the
science of inland waters. Such models serve a wide range of purposes for science and …

[HTML][HTML] MPR 1.0: a stand-alone multiscale parameter regionalization tool for improved parameter estimation of land surface models

R Schweppe, S Thober, S Müller… - Geoscientific Model …, 2022 - gmd.copernicus.org
Distributed environmental models such as land surface models (LSMs) require model
parameters in each spatial modeling unit (eg, grid cell), thereby leading to a high …

Incorporating uncertainty into multiscale parameter regionalization to evaluate the performance of nationally consistent parameter fields for a hydrological model

RA Lane, JE Freer, G Coxon… - Water Resources …, 2021 - Wiley Online Library
Spatial parameter fields are required to model hydrological processes across diverse
landscapes. Transfer functions are often used to relate parameters to spatial catchment …

A mass‐conserving‐perceptron for machine‐learning‐based modeling of geoscientific systems

YH Wang, HV Gupta - Water Resources Research, 2024 - Wiley Online Library
Although decades of effort have been devoted to building Physical‐Conceptual (PC) models
for predicting the time‐series evolution of geoscientific systems, recent work shows that …

Exploring the potential of long short‐term memory networks for improving understanding of continental‐and regional‐scale snowpack dynamics

YH Wang, HV Gupta, X Zeng… - Water Resources …, 2022 - Wiley Online Library
Accurate estimation of the spatio‐temporal distribution of snow water equivalent is essential
given its global importance for understanding climate dynamics and climate change, and as …

Niederschlags-Abfluss-Modellierung mit Long Short-Term Memory (LSTM)

F Kratzert, M Gauch, G Nearing, S Hochreiter… - Österreichische Wasser …, 2021 - Springer
Methoden der künstlichen Intelligenz haben sich in den letzten Jahren zu essenziellen
Bestandteilen fast aller Bereiche von Wissenschaft und Technik entwickelt. Dies gilt auch für …