A comprehensive survey on test-time adaptation under distribution shifts
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …
process that can effectively generalize to test samples, even in the presence of distribution …
A Survey on Self-supervised Learning: Algorithms, Applications, and Future Trends
Deep supervised learning algorithms typically require a large volume of labeled data to
achieve satisfactory performance. However, the process of collecting and labeling such data …
achieve satisfactory performance. However, the process of collecting and labeling such data …
Contrastive test-time adaptation
Test-time adaptation is a special setting of unsupervised domain adaptation where a trained
model on the source domain has to adapt to the target domain without accessing source …
model on the source domain has to adapt to the target domain without accessing source …
Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation
Self-training is a competitive approach in domain adaptive segmentation, which trains the
network with the pseudo labels on the target domain. However inevitably, the pseudo labels …
network with the pseudo labels on the target domain. However inevitably, the pseudo labels …
Vicreg: Variance-invariance-covariance regularization for self-supervised learning
Recent self-supervised methods for image representation learning are based on maximizing
the agreement between embedding vectors from different views of the same image. A trivial …
the agreement between embedding vectors from different views of the same image. A trivial …
Generalized source-free domain adaptation
Abstract Domain adaptation (DA) aims to transfer the knowledge learned from source
domain to an unlabeled target domain. Some recent works tackle source-free domain …
domain to an unlabeled target domain. Some recent works tackle source-free domain …
Attracting and dispersing: A simple approach for source-free domain adaptation
S Yang, S Jui, J van de Weijer - Advances in Neural …, 2022 - proceedings.neurips.cc
We propose a simple but effective source-free domain adaptation (SFDA) method. Treating
SFDA as an unsupervised clustering problem and following the intuition that local neighbors …
SFDA as an unsupervised clustering problem and following the intuition that local neighbors …
Source-free domain adaptation via distribution estimation
Abstract Domain Adaptation aims to transfer the knowledge learned from a labeled source
domain to an unlabeled target domain whose data distributions are different. However, the …
domain to an unlabeled target domain whose data distributions are different. However, the …
Source data-absent unsupervised domain adaptation through hypothesis transfer and labeling transfer
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a related but
different well-labeled source domain to a new unlabeled target domain. Most existing UDA …
different well-labeled source domain to a new unlabeled target domain. Most existing UDA …
Semi-supervised and unsupervised deep visual learning: A survey
State-of-the-art deep learning models are often trained with a large amount of costly labeled
training data. However, requiring exhaustive manual annotations may degrade the model's …
training data. However, requiring exhaustive manual annotations may degrade the model's …