[HTML][HTML] A review of uncertainty quantification in deep learning: Techniques, applications and challenges

M Abdar, F Pourpanah, S Hussain, D Rezazadegan… - Information fusion, 2021 - Elsevier
Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of
uncertainties during both optimization and decision making processes. They have been …

Weakly supervised machine learning

Z Ren, S Wang, Y Zhang - CAAI Transactions on Intelligence …, 2023 - Wiley Online Library
Supervised learning aims to build a function or model that seeks as many mappings as
possible between the training data and outputs, where each training data will predict as a …

Bidirectional copy-paste for semi-supervised medical image segmentation

Y Bai, D Chen, Q Li, W Shen… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
In semi-supervised medical image segmentation, there exist empirical mismatch problems
between labeled and unlabeled data distribution. The knowledge learned from the labeled …

Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency

X Luo, G Wang, W Liao, J Chen, T Song, Y Chen… - Medical Image …, 2022 - Elsevier
Abstract Despite that Convolutional Neural Networks (CNNs) have achieved promising
performance in many medical image segmentation tasks, they rely on a large set of labeled …

Semi-supervised medical image segmentation via cross teaching between cnn and transformer

X Luo, M Hu, T Song, G Wang… - … conference on medical …, 2022 - proceedings.mlr.press
Recently, deep learning with Convolutional Neural Networks (CNNs) and Transformers has
shown encouraging results in fully supervised medical image segmentation. However, it is …

Abdomenct-1k: Is abdominal organ segmentation a solved problem?

J Ma, Y Zhang, S Gu, C Zhu, C Ge… - … on Pattern Analysis …, 2021 - ieeexplore.ieee.org
With the unprecedented developments in deep learning, automatic segmentation of main
abdominal organs seems to be a solved problem as state-of-the-art (SOTA) methods have …

Simcvd: Simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation

C You, Y Zhou, R Zhao, L Staib… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Automated segmentation in medical image analysis is a challenging task that requires a
large amount of manually labeled data. However, most existing learning-based approaches …

A robust volumetric transformer for accurate 3D tumor segmentation

H Peiris, M Hayat, Z Chen, G Egan… - International conference on …, 2022 - Springer
We propose a Transformer architecture for volumetric segmentation, a challenging task that
requires keeping a complex balance in encoding local and global spatial cues, and …

Mutual consistency learning for semi-supervised medical image segmentation

Y Wu, Z Ge, D Zhang, M Xu, L Zhang, Y Xia, J Cai - Medical Image Analysis, 2022 - Elsevier
In this paper, we propose a novel mutual consistency network (MC-Net+) to effectively
exploit the unlabeled data for semi-supervised medical image segmentation. The MC-Net+ …

Uncertainty-guided dual-views for semi-supervised volumetric medical image segmentation

H Peiris, M Hayat, Z Chen, G Egan… - Nature Machine …, 2023 - nature.com
Deep learning has led to tremendous progress in the field of medical artificial intelligence.
However, training deep-learning models usually require large amounts of annotated data …