Physics-inspired structural representations for molecules and materials

F Musil, A Grisafi, AP Bartók, C Ortner… - Chemical …, 2021 - ACS Publications
The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic-scale structure of matter and its …

Structure prediction drives materials discovery

AR Oganov, CJ Pickard, Q Zhu, RJ Needs - Nature Reviews Materials, 2019 - nature.com
Progress in the discovery of new materials has been accelerated by the development of
reliable quantum-mechanical approaches to crystal structure prediction. The properties of a …

[HTML][HTML] Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms

Z Ma, G Wu, PN Suganthan, A Song, Q Luo - Swarm and Evolutionary …, 2023 - Elsevier
Metaheuristics are popularly used in various fields, and they have attracted much attention
in the scientific and industrial communities. In recent years, the number of new metaheuristic …

[HTML][HTML] Perspective on integrating machine learning into computational chemistry and materials science

J Westermayr, M Gastegger, KT Schütt… - The Journal of Chemical …, 2021 - pubs.aip.org
Machine learning (ML) methods are being used in almost every conceivable area of
electronic structure theory and molecular simulation. In particular, ML has become firmly …

Computational approaches for organic semiconductors: from chemical and physical understanding to predicting new materials

V Bhat, CP Callaway, C Risko - Chemical Reviews, 2023 - ACS Publications
While a complete understanding of organic semiconductor (OSC) design principles remains
elusive, computational methods─ ranging from techniques based in classical and quantum …

MAGUS: machine learning and graph theory assisted universal structure searcher

J Wang, H Gao, Y Han, C Ding, S Pan… - National Science …, 2023 - academic.oup.com
Crystal structure predictions based on first-principles calculations have gained great
success in materials science and solid state physics. However, the remaining challenges …

Crystal structure prediction via efficient sampling of the potential energy surface

Y Wang, J Lv, P Gao, Y Ma - Accounts of Chemical Research, 2022 - ACS Publications
Conspectus The crystal structure prediction (CSP) has emerged in recent years as a major
theme in research across many scientific disciplines in physics, chemistry, materials science …

Unsupervised machine learning in atomistic simulations, between predictions and understanding

M Ceriotti - The Journal of chemical physics, 2019 - pubs.aip.org
Automated analyses of the outcome of a simulation have been an important part of atomistic
modeling since the early days, addressing the need of linking the behavior of individual …

Deep dive into machine learning density functional theory for materials science and chemistry

L Fiedler, K Shah, M Bussmann, A Cangi - Physical Review Materials, 2022 - APS
With the growth of computational resources, the scope of electronic structure simulations has
increased greatly. Artificial intelligence and robust data analysis hold the promise to …

The XtalOpt evolutionary algorithm for crystal structure prediction

Z Falls, P Avery, X Wang, KP Hilleke… - The Journal of Physical …, 2020 - ACS Publications
Significant progress has been made in the field of a priori crystal structure prediction, with a
number of recent remarkable success stories. Herein, we briefly outline the methods that …