A truncated aggregate smoothing Newton method for minimax problems
Y Xiao, B Yu - Applied Mathematics and Computation, 2010 - Elsevier
Aggregate function is a useful smoothing function to the max-function of some smooth
functions and has been used to solve minimax problems, linear and nonlinear programming …
functions and has been used to solve minimax problems, linear and nonlinear programming …
A multivariate Chebyshev bound of the Selberg form
AS Arkhipov, KV Semenikhin - Automation and Remote Control, 2022 - Springer
The least upper bound for the probability that a random vector with fixed mean and
covariance will be outside the ball is found. This probability bound is determined by solving …
covariance will be outside the ball is found. This probability bound is determined by solving …
Distributionally Robust Optimization by Probability Criterion for Estimating a Bounded Signal
K Semenikhin, A Arkhipov - International Conference on Mathematical …, 2023 - Springer
This paper aims at solving a distributionally robust minimax estimation problem to recover a
bounded smooth signal from the finite number of measurements with known second-order …
bounded smooth signal from the finite number of measurements with known second-order …
A Robust Probability Classifier Based on the Modified χ2‐Distance
Y Wang, Y Zhang, J Yi, H Qu… - mathematical Problems in …, 2014 - Wiley Online Library
We propose a robust probability classifier model to address classification problems with data
uncertainty. A class‐conditional probability distributional set is constructed based on the …
uncertainty. A class‐conditional probability distributional set is constructed based on the …
Многомерная чебышевская граница типа Селберга
АС Архипов, КВ Семенихин - Автоматика и телемеханика, 2022 - mathnet.ru
Определена точная верхняя грань вероятности того, что случайный вектор с
заданными математическим ожиданием и ковариационной матрицей окажется вне …
заданными математическим ожиданием и ковариационной матрицей окажется вне …