Human activity recognition: Review, taxonomy and open challenges

MH Arshad, M Bilal, A Gani - Sensors, 2022 - mdpi.com
Nowadays, Human Activity Recognition (HAR) is being widely used in a variety of domains,
and vision and sensor-based data enable cutting-edge technologies to detect, recognize …

Deep learning-based action detection in untrimmed videos: A survey

E Vahdani, Y Tian - IEEE Transactions on Pattern Analysis and …, 2022 - ieeexplore.ieee.org
Understanding human behavior and activity facilitates advancement of numerous real-world
applications, and is critical for video analysis. Despite the progress of action recognition …

Videomae v2: Scaling video masked autoencoders with dual masking

L Wang, B Huang, Z Zhao, Z Tong… - Proceedings of the …, 2023 - openaccess.thecvf.com
Scale is the primary factor for building a powerful foundation model that could well
generalize to a variety of downstream tasks. However, it is still challenging to train video …

Masked autoencoders as spatiotemporal learners

C Feichtenhofer, Y Li, K He - Advances in neural …, 2022 - proceedings.neurips.cc
This paper studies a conceptually simple extension of Masked Autoencoders (MAE) to
spatiotemporal representation learning from videos. We randomly mask out spacetime …

Internvideo: General video foundation models via generative and discriminative learning

Y Wang, K Li, Y Li, Y He, B Huang, Z Zhao… - arXiv preprint arXiv …, 2022 - arxiv.org
The foundation models have recently shown excellent performance on a variety of
downstream tasks in computer vision. However, most existing vision foundation models …

Masked feature prediction for self-supervised visual pre-training

C Wei, H Fan, S Xie, CY Wu, A Yuille… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract We present Masked Feature Prediction (MaskFeat) for self-supervised pre-training
of video models. Our approach first randomly masks out a portion of the input sequence and …

Mvitv2: Improved multiscale vision transformers for classification and detection

Y Li, CY Wu, H Fan, K Mangalam… - Proceedings of the …, 2022 - openaccess.thecvf.com
In this paper, we study Multiscale Vision Transformers (MViTv2) as a unified architecture for
image and video classification, as well as object detection. We present an improved version …

St-adapter: Parameter-efficient image-to-video transfer learning

J Pan, Z Lin, X Zhu, J Shao, H Li - Advances in Neural …, 2022 - proceedings.neurips.cc
Capitalizing on large pre-trained models for various downstream tasks of interest have
recently emerged with promising performance. Due to the ever-growing model size, the …

Memvit: Memory-augmented multiscale vision transformer for efficient long-term video recognition

CY Wu, Y Li, K Mangalam, H Fan… - Proceedings of the …, 2022 - openaccess.thecvf.com
While today's video recognition systems parse snapshots or short clips accurately, they
cannot connect the dots and reason across a longer range of time yet. Most existing video …

Cross-modal causal relational reasoning for event-level visual question answering

Y Liu, G Li, L Lin - IEEE Transactions on Pattern Analysis and …, 2023 - ieeexplore.ieee.org
Existing visual question answering methods often suffer from cross-modal spurious
correlations and oversimplified event-level reasoning processes that fail to capture event …