Microenvironment engineering of single/dual‐atom catalysts for electrocatalytic application

Y Gao, B Liu, D Wang - Advanced Materials, 2023 - Wiley Online Library
Single/dual‐metal atoms supported on carbon matrix can be modulated by coordination
structure and neighboring active sites. Precisely designing the geometric and electronic …

High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis

L Li, X Cao, J Huo, J Qu, W Chen, C Liu, Y Zhao… - Journal of Energy …, 2023 - Elsevier
Electrocatalysis for the oxygen evolution reactions (OER) has attracted much attention due
to its important role in water splitting and rechargeable metal-air batteries. Therefore …

Single‐atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia

K Chen, Z Ma, X Li, J Kang, D Ma… - Advanced Functional …, 2023 - Wiley Online Library
Electrochemical reduction of nitrate to ammonia (NO3RR) holds a great promise for attaining
both NH3 electrosynthesis and wastewater purification. Herein, single‐atom Bi alloyed Pd …

Synergizing Hydrogen Spillover and Deprotonation by the Internal Polarization Field in a MoS2/NiPS3 Vertical Heterostructure for Boosted Water Electrolysis

Y Liu, Y Chen, Y Tian, T Sakthivel, H Liu… - Advanced …, 2022 - Wiley Online Library
Hydrogen spillover (HSo) has emerged to upgrade the hydrogen evolution reaction (HER)
activity of Pt‐support electrocatalysts, but it is not applicable to the deprotonated oxygen …

Reinforcing Co O Covalency via Ce (4f)─ O (2p)─ Co (3d) Gradient Orbital Coupling for High‐Efficiency Oxygen Evolution

M Li, X Wang, K Liu, H Sun, D Sun, K Huang… - Advanced …, 2023 - Wiley Online Library
Abstract Rare‐earth (RE)‐based transition metal oxides (TMO) are emerging as a frontier
toward the oxygen evolution reaction (OER), yet the knowledge regarding their …

Amorphous/crystalline heterostructure transition-metal-based catalysts for high-performance water splitting

Y Zhang, F Gao, D Wang, Z Li, X Wang, C Wang… - Coordination Chemistry …, 2023 - Elsevier
The rational phase engineering on transition-metal-based (TM-based) catalysts is an
efficient strategy to improve the catalytic performance for oxygen evolution reaction (OER) …

Tuning mass transport in electrocatalysis down to sub‐5 nm through nanoscale grade separation

Z Liu, Y Du, R Yu, M Zheng, R Hu, J Wu… - Angewandte …, 2023 - Wiley Online Library
Nano and single‐atom catalysis open new possibilities of producing green hydrogen (H2)
by water electrolysis. However, for the hydrogen evolution reaction (HER) which occurs at a …

Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction

H Xu, J Yuan, G He, H Chen - Coordination Chemistry Reviews, 2023 - Elsevier
Fabricating advanced oxygen evolution reaction (OER) catalysts is of vital significance for
the effectiveness of water splitting. Endowed with high catalytic performance toward OER …

Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications

H Sun, X Xu, H Kim, WC Jung… - Energy & …, 2023 - Wiley Online Library
Electrochemical water splitting represents one of the most promising technologies to
produce green hydrogen, which can help to realize the goal of achieving carbon neutrality …

Long‐term stability challenges and opportunities in acidic oxygen evolution electrocatalysis

Q Wang, Y Cheng, HB Tao, Y Liu, X Ma… - Angewandte …, 2023 - Wiley Online Library
Polymer electrolyte membrane water electrolysis (PEMWE) has been regarded as a
promising technology for renewable hydrogen production. However, acidic oxygen evolution …