Robots that use language
This article surveys the use of natural language in robotics from a robotics point of view. To
use human language, robots must map words to aspects of the physical world, mediated by …
use human language, robots must map words to aspects of the physical world, mediated by …
Large language models for robotics: A survey
The human ability to learn, generalize, and control complex manipulation tasks through multi-
modality feedback suggests a unique capability, which we refer to as dexterity intelligence …
modality feedback suggests a unique capability, which we refer to as dexterity intelligence …
Rt-1: Robotics transformer for real-world control at scale
A Brohan, N Brown, J Carbajal, Y Chebotar… - arXiv preprint arXiv …, 2022 - arxiv.org
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine
learning models can solve specific downstream tasks either zero-shot or with small task …
learning models can solve specific downstream tasks either zero-shot or with small task …
The rise and potential of large language model based agents: A survey
For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing
the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are …
the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are …
Voxposer: Composable 3d value maps for robotic manipulation with language models
Large language models (LLMs) are shown to possess a wealth of actionable knowledge that
can be extracted for robot manipulation in the form of reasoning and planning. Despite the …
can be extracted for robot manipulation in the form of reasoning and planning. Despite the …
Code as policies: Language model programs for embodied control
Large language models (LLMs) trained on code-completion have been shown to be capable
of synthesizing simple Python programs from docstrings [1]. We find that these code-writing …
of synthesizing simple Python programs from docstrings [1]. We find that these code-writing …
Perceiver-actor: A multi-task transformer for robotic manipulation
Transformers have revolutionized vision and natural language processing with their ability to
scale with large datasets. But in robotic manipulation, data is both limited and expensive …
scale with large datasets. But in robotic manipulation, data is both limited and expensive …
Inner monologue: Embodied reasoning through planning with language models
Recent works have shown how the reasoning capabilities of Large Language Models
(LLMs) can be applied to domains beyond natural language processing, such as planning …
(LLMs) can be applied to domains beyond natural language processing, such as planning …
Lm-nav: Robotic navigation with large pre-trained models of language, vision, and action
Goal-conditioned policies for robotic navigation can be trained on large, unannotated
datasets, providing for good generalization to real-world settings. However, particularly in …
datasets, providing for good generalization to real-world settings. However, particularly in …
Visual language maps for robot navigation
Grounding language to the visual observations of a navigating agent can be performed
using off-the-shelf visual-language models pretrained on Internet-scale data (eg, image …
using off-the-shelf visual-language models pretrained on Internet-scale data (eg, image …