Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li–S batteries
J Wu, T Ye, Y Wang, P Yang, Q Wang, W Kuang… - ACS …, 2022 - ACS Publications
Because of their high energy density, low cost, and environmental friendliness, lithium–
sulfur (Li–S) batteries are one of the potential candidates for the next-generation energy …
sulfur (Li–S) batteries are one of the potential candidates for the next-generation energy …
Recent Progress for Concurrent Realization of Shuttle‐Inhibition and Dendrite‐Free Lithium–Sulfur Batteries
Abstract Lithium–sulfur (Li–S) batteries have become one of the most promising new‐
generation energy storage systems owing to their ultrahigh energy density (2600 Wh kg− 1) …
generation energy storage systems owing to their ultrahigh energy density (2600 Wh kg− 1) …
Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries
Catalytic conversion of polysulfides is regarded as a crucial approach to enhancing kinetics
and suppressing the shuttle effect in lithium–sulfur (Li–S) batteries. However, the activity …
and suppressing the shuttle effect in lithium–sulfur (Li–S) batteries. However, the activity …
Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics
The catalytic conversion of lithium polysulfides is a promising way to inhibit the shuttling
effect in Li–S batteries. However, the mechanism of such catalytic systems remains unclear …
effect in Li–S batteries. However, the mechanism of such catalytic systems remains unclear …
Heterostructures Regulating Lithium Polysulfides for Advanced Lithium‐Sulfur Batteries
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder
the development of lithium‐sulfur batteries. Heterostructures, due to unique properties, have …
the development of lithium‐sulfur batteries. Heterostructures, due to unique properties, have …
Recent advances and strategies toward polysulfides shuttle inhibition for high‐performance Li–S batteries
Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation
energy storage systems due to their high energy density and cost‐effectiveness. However …
energy storage systems due to their high energy density and cost‐effectiveness. However …
Strategies toward high-loading lithium–sulfur batteries
A high sulfur loading is an essential prerequisite for the practical application of lithium–sulfur
batteries. However, it will inevitably exacerbate the shuttling effect and slow down the …
batteries. However, it will inevitably exacerbate the shuttling effect and slow down the …
Expediting Stepwise Sulfur Conversion via Spontaneous Built‐In Electric Field and Binary Sulfiphilic Effect of Conductive NbB2‐MXene Heterostructure in Lithium …
D Lu, X Wang, Y Hu, L Yue, Z Shao… - Advanced Functional …, 2023 - Wiley Online Library
Fabricating metal boride heterostructures and deciphering their interface interaction
mechanism on accelerating polysulfide conversion at atomic levels are meaningful yet …
mechanism on accelerating polysulfide conversion at atomic levels are meaningful yet …
Design rules of a sulfur redox electrocatalyst for lithium–sulfur batteries
Seeking an electrochemical catalyst to accelerate the liquid‐to‐solid conversion of soluble
lithium polysulfides to insoluble products is crucial to inhibit the shuttle effect in lithium–sulfur …
lithium polysulfides to insoluble products is crucial to inhibit the shuttle effect in lithium–sulfur …
Semi-immobilized molecular electrocatalysts for high-performance lithium–sulfur batteries
Lithium–sulfur (Li–S) batteries constitute promising next-generation energy storage devices
due to the ultrahigh theoretical energy density of 2600 Wh kg–1. However, the multiphase …
due to the ultrahigh theoretical energy density of 2600 Wh kg–1. However, the multiphase …