How to dp-fy ml: A practical guide to machine learning with differential privacy

N Ponomareva, H Hazimeh, A Kurakin, Z Xu… - Journal of Artificial …, 2023 - jair.org
Abstract Machine Learning (ML) models are ubiquitous in real-world applications and are a
constant focus of research. Modern ML models have become more complex, deeper, and …

A survey on differential privacy for unstructured data content

Y Zhao, J Chen - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
Huge amounts of unstructured data including image, video, audio, and text are ubiquitously
generated and shared, and it is a challenge to protect sensitive personal information in …

Certified robustness to adversarial examples with differential privacy

M Lecuyer, V Atlidakis, R Geambasu… - … IEEE symposium on …, 2019 - ieeexplore.ieee.org
Adversarial examples that fool machine learning models, particularly deep neural networks,
have been a topic of intense research interest, with attacks and defenses being developed …

Differential privacy techniques for cyber physical systems: A survey

MU Hassan, MH Rehmani… - … Communications Surveys & …, 2019 - ieeexplore.ieee.org
Modern cyber physical systems (CPSs) has widely being used in our daily lives because of
development of information and communication technologies (ICT). With the provision of …

Privacy in large language models: Attacks, defenses and future directions

H Li, Y Chen, J Luo, J Wang, H Peng, Y Kang… - arXiv preprint arXiv …, 2023 - arxiv.org
The advancement of large language models (LLMs) has significantly enhanced the ability to
effectively tackle various downstream NLP tasks and unify these tasks into generative …

Local differential privacy and its applications: A comprehensive survey

M Yang, T Guo, T Zhu, I Tjuawinata, J Zhao… - Computer Standards & …, 2024 - Elsevier
With the rapid development of low-cost consumer electronics and pervasive adoption of next
generation wireless communication technologies, a tremendous amount of data has been …

Technical privacy metrics: a systematic survey

I Wagner, D Eckhoff - ACM Computing Surveys (Csur), 2018 - dl.acm.org
The goal of privacy metrics is to measure the degree of privacy enjoyed by users in a system
and the amount of protection offered by privacy-enhancing technologies. In this way, privacy …

Clustered federated learning with adaptive local differential privacy on heterogeneous iot data

Z He, L Wang, Z Cai - IEEE Internet of Things Journal, 2023 - ieeexplore.ieee.org
The Internet of Things (IoT) is penetrating many aspects of our daily life with the proliferation
of artificial intelligence applications. Federated learning (FL) has emerged as a promising …

Generating synthetic data in finance: opportunities, challenges and pitfalls

SA Assefa, D Dervovic, M Mahfouz, RE Tillman… - Proceedings of the First …, 2020 - dl.acm.org
Financial services generate a huge volume of data that is extremely complex and varied.
These datasets are often stored in silos within organisations for various reasons, including …

Geo-indistinguishability: Differential privacy for location-based systems

ME Andrés, NE Bordenabe, K Chatzikokolakis… - Proceedings of the …, 2013 - dl.acm.org
The growing popularity of location-based systems, allowing unknown/untrusted servers to
easily collect huge amounts of information regarding users' location, has recently started …