A structurally regularized cnn architecture via adaptive subband decomposition

P Sinha, I Psaromiligkos, Z Zilic - IEEE Transactions on Neural …, 2024 - ieeexplore.ieee.org
We propose a generalized convolutional neural network (CNN) architecture that first
decomposes the input signal into subbands by an adaptive filter bank structure, and then …

Optimization of Scatter Network Architectures and Bank Allocations for Sparse CNN Accelerators

S Kim, S Park, CS Park - IEEE Access, 2022 - ieeexplore.ieee.org
Sparse convolutional neural network (SCNN) accelerators eliminate unnecessary
computations and memory access by exploiting zero-valued activation pixels and filter …

Properties and applications of a structurally regularized CNN architecture via adaptive subband decomposition

P Sinha - 2024 - escholarship.mcgill.ca
Dans cette thèse, nous présentons le concept d'architecture CNN de décomposition en sous-
bandes qui peut apprendre les coefficients de décomposition en sous-bandes à partir d'un …

Design and verification of convolutional neural network accelerator

G Xiang, J Sui, X Zhang - International Conference on Signal …, 2023 - spiedigitallibrary.org
The existing software implementation schemes of Convolutional Neural Networks (CNN)
cannot meet the requirements of computing performance and power consumption. To further …