[图书][B] Finite elements I: Approximation and interpolation
A Ern, JL Guermond - 2021 - books.google.com
This book is the first volume of a three-part textbook suitable for graduate coursework,
professional engineering and academic research. It is also appropriate for graduate flipped …
professional engineering and academic research. It is also appropriate for graduate flipped …
[图书][B] Finite elements II
A Ern, JL Guermond - 2021 - Springer
The mathematization of all sciences, the fading of traditional scientific boundaries, the
impact of computer technology, the growing importance of computer modelling and the …
impact of computer technology, the growing importance of computer modelling and the …
Numerical approximation of the integral fractional Laplacian
We propose a new nonconforming finite element algorithm to approximate the solution to the
elliptic problem involving the fractional Laplacian. We first derive an integral representation …
elliptic problem involving the fractional Laplacian. We first derive an integral representation …
Gaussian Whittle–Matérn fields on metric graphs
We define a new class of Gaussian processes on compact metric graphs such as street or
river networks. The proposed models, the Whittle–Matérn fields, are defined via a fractional …
river networks. The proposed models, the Whittle–Matérn fields, are defined via a fractional …
The critical variational setting for stochastic evolution equations
In this paper we introduce the critical variational setting for parabolic stochastic evolution
equations of quasi-or semi-linear type. Our results improve many of the abstract results in …
equations of quasi-or semi-linear type. Our results improve many of the abstract results in …
Norm growth, non-uniqueness, and anomalous dissipation in passive scalars
TM Elgindi, K Liss - Archive for Rational Mechanics and Analysis, 2024 - Springer
We construct a divergence-free velocity field u:[0, T]× T 2→ R 2 satisfying u∈ C∞([0, T]; C α
(T 2))∀ α∈[0, 1) such that the corresponding drift-diffusion equation exhibits anomalous …
(T 2))∀ α∈[0, 1) such that the corresponding drift-diffusion equation exhibits anomalous …
Analysis and approximation of mixed-dimensional PDEs on 3D-1D domains coupled with Lagrange multipliers
Coupled partial differential equations (PDEs) defined on domains with different
dimensionality are usually called mixed-dimensional PDEs. We address mixed-dimensional …
dimensionality are usually called mixed-dimensional PDEs. We address mixed-dimensional …
Sharp high-frequency estimates for the Helmholtz equation and applications to boundary integral equations
We consider three problems for the Helmholtz equation in interior and exterior domains in
R^d (d=2,3): the exterior Dirichlet-to-Neumann and Neumann-to-Dirichlet problems for …
R^d (d=2,3): the exterior Dirichlet-to-Neumann and Neumann-to-Dirichlet problems for …
For Most Frequencies, Strong Trapping Has a Weak Effect in Frequency‐Domain Scattering
D Lafontaine, EA Spence… - Communications on Pure …, 2021 - Wiley Online Library
It is well‐known that when the geometry and/or coefficients allow stable trapped rays, the
outgoing solution operator of the Helmholtz equation grows exponentially through a …
outgoing solution operator of the Helmholtz equation grows exponentially through a …
Regularity and numerical approximation of fractional elliptic differential equations on compact metric graphs
The fractional differential equation $ L^\beta u= f $ posed on a compact metric graph is
considered, where $\beta> 0$ and $ L=\kappa^ 2-\nabla (a\nabla) $ is a second-order …
considered, where $\beta> 0$ and $ L=\kappa^ 2-\nabla (a\nabla) $ is a second-order …