[HTML][HTML] Review of image classification algorithms based on convolutional neural networks
L Chen, S Li, Q Bai, J Yang, S Jiang, Y Miao - Remote Sensing, 2021 - mdpi.com
Image classification has always been a hot research direction in the world, and the
emergence of deep learning has promoted the development of this field. Convolutional …
emergence of deep learning has promoted the development of this field. Convolutional …
A survey of convolutional neural networks: analysis, applications, and prospects
A convolutional neural network (CNN) is one of the most significant networks in the deep
learning field. Since CNN made impressive achievements in many areas, including but not …
learning field. Since CNN made impressive achievements in many areas, including but not …
Adaface: Quality adaptive margin for face recognition
Recognition in low quality face datasets is challenging because facial attributes are
obscured and degraded. Advances in margin-based loss functions have resulted in …
obscured and degraded. Advances in margin-based loss functions have resulted in …
Mitigating neural network overconfidence with logit normalization
Detecting out-of-distribution inputs is critical for the safe deployment of machine learning
models in the real world. However, neural networks are known to suffer from the …
models in the real world. However, neural networks are known to suffer from the …
Magface: A universal representation for face recognition and quality assessment
The performance of face recognition system degrades when the variability of the acquired
faces increases. Prior work alleviates this issue by either monitoring the face quality in pre …
faces increases. Prior work alleviates this issue by either monitoring the face quality in pre …
Vicreg: Variance-invariance-covariance regularization for self-supervised learning
Recent self-supervised methods for image representation learning are based on maximizing
the agreement between embedding vectors from different views of the same image. A trivial …
the agreement between embedding vectors from different views of the same image. A trivial …
Elasticface: Elastic margin loss for deep face recognition
Learning discriminative face features plays a major role in building high-performing face
recognition models. The recent state-of-the-art face recognition solutions proposed to …
recognition models. The recent state-of-the-art face recognition solutions proposed to …
Deep discriminative transfer learning network for cross-machine fault diagnosis
Many domain adaptation methods have been presented to deal with the distribution
alignment and knowledge transfer between the target domain and the source domain …
alignment and knowledge transfer between the target domain and the source domain …
[HTML][HTML] Hyper-sausage coverage function neuron model and learning algorithm for image classification
Recently, deep neural networks (DNNs) promote mainly by network architectures and loss
functions; however, the development of neuron models has been quite limited. In this study …
functions; however, the development of neuron models has been quite limited. In this study …
Long-tail learning via logit adjustment
Real-world classification problems typically exhibit an imbalanced or long-tailed label
distribution, wherein many labels are associated with only a few samples. This poses a …
distribution, wherein many labels are associated with only a few samples. This poses a …