Artificial intelligence to deep learning: machine intelligence approach for drug discovery
Drug designing and development is an important area of research for pharmaceutical
companies and chemical scientists. However, low efficacy, off-target delivery, time …
companies and chemical scientists. However, low efficacy, off-target delivery, time …
AI in drug discovery and its clinical relevance
The COVID-19 pandemic has emphasized the need for novel drug discovery process.
However, the journey from conceptualizing a drug to its eventual implementation in clinical …
However, the journey from conceptualizing a drug to its eventual implementation in clinical …
[HTML][HTML] Geometry-enhanced molecular representation learning for property prediction
Effective molecular representation learning is of great importance to facilitate molecular
property prediction. Recent advances for molecular representation learning have shown …
property prediction. Recent advances for molecular representation learning have shown …
A unified drug–target interaction prediction framework based on knowledge graph and recommendation system
Prediction of drug-target interactions (DTI) plays a vital role in drug development in various
areas, such as virtual screening, drug repurposing and identification of potential drug side …
areas, such as virtual screening, drug repurposing and identification of potential drug side …
Machine learning for synthetic data generation: a review
Machine learning heavily relies on data, but real-world applications often encounter various
data-related issues. These include data of poor quality, insufficient data points leading to …
data-related issues. These include data of poor quality, insufficient data points leading to …
Therapeutics data commons: Machine learning datasets and tasks for drug discovery and development
Therapeutics machine learning is an emerging field with incredible opportunities for
innovatiaon and impact. However, advancement in this field requires formulation of …
innovatiaon and impact. However, advancement in this field requires formulation of …
Contrastive learning in protein language space predicts interactions between drugs and protein targets
Sequence-based prediction of drug–target interactions has the potential to accelerate drug
discovery by complementing experimental screens. Such computational prediction needs to …
discovery by complementing experimental screens. Such computational prediction needs to …
Deep learning for drug repurposing: Methods, databases, and applications
Drug development is time‐consuming and expensive. Repurposing existing drugs for new
therapies is an attractive solution that accelerates drug development at reduced …
therapies is an attractive solution that accelerates drug development at reduced …
Machine learning for synergistic network pharmacology: a comprehensive overview
Network pharmacology is an emerging area of systematic drug research that attempts to
understand drug actions and interactions with multiple targets. Network pharmacology has …
understand drug actions and interactions with multiple targets. Network pharmacology has …
Comprehensive survey of recent drug discovery using deep learning
Drug discovery based on artificial intelligence has been in the spotlight recently as it
significantly reduces the time and cost required for developing novel drugs. With the …
significantly reduces the time and cost required for developing novel drugs. With the …