Low-rank and sparse representation for hyperspectral image processing: A review

J Peng, W Sun, HC Li, W Li, X Meng… - IEEE Geoscience and …, 2021 - ieeexplore.ieee.org
Combining rich spectral and spatial information, a hyperspectral image (HSI) can provide a
more comprehensive characterization of the Earth's surface. To better exploit HSIs, a large …

Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art

P Ghamisi, N Yokoya, J Li, W Liao, S Liu… - … and Remote Sensing …, 2017 - ieeexplore.ieee.org
Recent advances in airborne and spaceborne hyperspectral imaging technology have
provided end users with rich spectral, spatial, and temporal information. They have made a …

Non-local meets global: An iterative paradigm for hyperspectral image restoration

W He, Q Yao, C Li, N Yokoya, Q Zhao… - … on Pattern Analysis …, 2020 - ieeexplore.ieee.org
Non-local low-rank tensor approximation has been developed as a state-of-the-art method
for hyperspectral image (HSI) restoration, which includes the tasks of denoising …

Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network

Q Yuan, Q Zhang, J Li, H Shen… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
Hyperspectral image (HSI) denoising is a crucial preprocessing procedure to improve the
performance of the subsequent HSI interpretation and applications. In this paper, a novel …

Spatial-spectral structured sparse low-rank representation for hyperspectral image super-resolution

J Xue, YQ Zhao, Y Bu, W Liao… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Hyperspectral image super-resolution by fusing high-resolution multispectral image (HR-
MSI) and low-resolution hyperspectral image (LR-HSI) aims at reconstructing high resolution …

Spectral–spatial unified networks for hyperspectral image classification

Y Xu, L Zhang, B Du, F Zhang - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
In this paper, we propose a spectral–spatial unified network (SSUN) with an end-to-end
architecture for the hyperspectral image (HSI) classification. Different from traditional …

HSI-DeNet: Hyperspectral image restoration via convolutional neural network

Y Chang, L Yan, H Fang, S Zhong… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
The spectral and the spatial information in hyperspectral images (HSIs) are the two sides of
the same coin. How to jointly model them is the key issue for HSIs' noise removal, including …

Hyperspectral anomaly detection based on machine learning: An overview

Y Xu, L Zhang, B Du, L Zhang - IEEE Journal of Selected Topics …, 2022 - ieeexplore.ieee.org
Hyperspectral anomaly detection (HAD) is an important hyperspectral image application.
HAD can find pixels with anomalous spectral signatures compared with their neighbor …

Stacked convolutional denoising auto-encoders for feature representation

B Du, W Xiong, J Wu, L Zhang… - IEEE transactions on …, 2016 - ieeexplore.ieee.org
Deep networks have achieved excellent performance in learning representation from visual
data. However, the supervised deep models like convolutional neural network require large …

Hyperspectral image denoising: From model-driven, data-driven, to model-data-driven

Q Zhang, Y Zheng, Q Yuan, M Song… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Mixed noise pollution in HSI severely disturbs subsequent interpretations and applications.
In this technical review, we first give the noise analysis in different noisy HSIs and conclude …