A survey on urban traffic control under mixed traffic environment with connected automated vehicles

J Li, C Yu, Z Shen, Z Su, W Ma - Transportation research part C: emerging …, 2023 - Elsevier
Efficient traffic control can alleviate traffic congestion, reduce fuel consumption, and improve
traffic safety. With the development of communication and automation technologies, regular …

Verification and validation methods for decision-making and planning of automated vehicles: A review

Y Ma, C Sun, J Chen, D Cao… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Verification and validation (V&V) hold a significant position in the research and development
of automated vehicles (AVs). Current literature indicates that different V&V techniques have …

A survey on trajectory-prediction methods for autonomous driving

Y Huang, J Du, Z Yang, Z Zhou… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In order to drive safely in a dynamic environment, autonomous vehicles should be able to
predict the future states of traffic participants nearby, especially surrounding vehicles, similar …

[HTML][HTML] Toward human-in-the-loop AI: Enhancing deep reinforcement learning via real-time human guidance for autonomous driving

J Wu, Z Huang, Z Hu, C Lv - Engineering, 2023 - Elsevier
Due to its limited intelligence and abilities, machine learning is currently unable to handle
various situations thus cannot completely replace humans in real-world applications …

CitySim: a drone-based vehicle trajectory dataset for safety-oriented research and digital twins

O Zheng, M Abdel-Aty, L Yue… - Transportation …, 2024 - journals.sagepub.com
The development of safety-oriented research and applications requires fine-grain vehicle
trajectories that not only have high accuracy, but also capture substantial safety-critical …

Differentiable integrated motion prediction and planning with learnable cost function for autonomous driving

Z Huang, H Liu, J Wu, C Lv - IEEE transactions on neural …, 2023 - ieeexplore.ieee.org
Predicting the future states of surrounding traffic participants and planning a safe, smooth,
and socially compliant trajectory accordingly are crucial for autonomous vehicles (AVs) …

Multi-modal motion prediction with transformer-based neural network for autonomous driving

Z Huang, X Mo, C Lv - 2022 International Conference on …, 2022 - ieeexplore.ieee.org
Predicting the behaviors of other agents on the road is critical for autonomous driving to
ensure safety and efficiency. However, the challenging part is how to represent the social …

Efficient deep reinforcement learning with imitative expert priors for autonomous driving

Z Huang, J Wu, C Lv - IEEE Transactions on Neural Networks …, 2022 - ieeexplore.ieee.org
Deep reinforcement learning (DRL) is a promising way to achieve human-like autonomous
driving. However, the low sample efficiency and difficulty of designing reward functions for …

Conditional predictive behavior planning with inverse reinforcement learning for human-like autonomous driving

Z Huang, H Liu, J Wu, C Lv - IEEE Transactions on Intelligent …, 2023 - ieeexplore.ieee.org
Making safe and human-like decisions is an essential capability of autonomous driving
systems, and learning-based behavior planning presents a promising pathway toward …

Highway decision-making and motion planning for autonomous driving via soft actor-critic

X Tang, B Huang, T Liu, X Lin - IEEE Transactions on Vehicular …, 2022 - ieeexplore.ieee.org
In this study, a decision-making and motion planning controller with continuous action space
is constructed in the highway driving scenario based on deep reinforcement learning. In the …