DScPA: A Dynamic Sub-cluster Privacy-preserving Aggregation Scheme for Mobile Crowdsourcing in Industrial IoT

R Ma, T Feng, J Xiong, Q Li… - IEEE Internet of Things …, 2023 - ieeexplore.ieee.org
Mobile crowdsourcing (MCS) is a promising new paradigm for intelligent data perception in
large-scale sensor applications such as the Industrial Internet of Things (IIoT). This approach …

Communication-efficient privacy-preserving neural network inference via arithmetic secret sharing

R Bi, J Xiong, C Luo, J Ning, X Liu… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Well-trained neural network models are deployed on edge servers to provide valuable
inference services for clients. To protect data privacy, a promising way is to exploit various …

[HTML][HTML] Defensive strategies against PCC attacks based on ideal (t, n)-secret sharing scheme

S Ali, J Wang, VCM Leung - Journal of King Saud University-Computer and …, 2023 - Elsevier
We present a method to increase the dependability of cloud-based applications. Traditional
Secret Sharing Schemes (SSSs) typically fail to counter the challenges brought on by …

Federated Learning-Assisted Task Offloading Based on Feature Matching and Caching in Collaborative Device-Edge-Cloud Networks

J Tang, S Wang, S Yang, Y Xiang… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Mobile edge computing provides relatively rich computation resources for Internet-of-Things
(IoT) task offloading at the edge of networks. As time goes on, user tasks present diverse …

Efficient integer division computation protocols based on partial homomorphic encryption

Y Sun, J Wang, F Li - Cluster Computing, 2024 - Springer
In cloud environment, designing the efficient outsourced calculation protocols to serve the
machine learning or data mining is a hot topic. At the same time, homomorphic encryption …

Privacy-Preserving Optimal Parameter Selection for Collaborative Clustering

M Ghasemian, E Ayday - arXiv preprint arXiv:2406.05545, 2024 - arxiv.org
This study investigates the optimal selection of parameters for collaborative clustering while
ensuring data privacy. We focus on key clustering algorithms within a collaborative …

LSTN: A Lightweight Secure Three-Party Inference Framework for Deep Neural Networks

D Guo, C Luo, Y Zhang, R Bi… - ICC 2024-IEEE …, 2024 - ieeexplore.ieee.org
Secure inference in a deep-learning-as-a-service setting (DLaaS) can effectively protect
sensitive data of the client and server model parameters. However, various nonlinear …

Mixed Data Type Analysis: A Systematic Literature Review

H Pratama, FF Lubis… - … journaL Information System, 2024 - jom.fti.budiluhur.ac.id
This research aims to determine the direction of research in the analysis of mixed data types.
The world is currently filled with increasingly diverse data, especially in terms of data types …

KLASTERISASI PENERIMAAN RETRIBUSI PELAYANAN PASAR MENGGUNAKAN METODE K-PROTOTYPE

DA Sani, MZ Sarwani, J Fahmi - Jurnal Mnemonic, 2024 - ejournal.itn.ac.id
Pasar tradisional merupakan salah satu pusat kegiatan ekonomi yang penting di Kota
Pasuruan. Bagi pedagang, pemilihan tempat berjualan yang strategis dan sesuai dengan …

Why Not Model Privacy?: An Efficient

W Shuai¹, R Bi, Y Tian¹, J Xiong - … 2023, Guilin, China, July 22-24 …, 2024 - books.google.com
Privacy-Preserving Federated Learning (PPFL), a new paradigm for secure and efficient
Federated Learning, has the advantage of security aggregation without losing accuracy …