[PDF][PDF] Stability estimates for the recovery of the nonlinearity from scattering data

G Chen, J Murphy - arXiv preprint arXiv:2305.06170, 2023 - arxiv.org
We prove stability estimates for the problem of recovering the nonlinearity from scattering
data. We focus our attention on nonlinear Schr\" odinger equations of the …

Recovery of a spatially-dependent coefficient from the NLS scattering map

J Murphy - Communications in Partial Differential Equations, 2023 - Taylor & Francis
Full article: Recovery of a spatially-dependent coefficient from the NLS scattering map Skip to
Main Content Taylor and Francis Online homepage Browse Search Publish Login | Register Log …

On inverse scattering for the two-dimensional nonlinear Schrödinger equation

H Sasaki - Journal of Differential Equations, 2024 - Elsevier
The inverse scattering problem for the two-dimensional nonlinear Schrödinger equation iu t+
Δ u= N (u) is studied. We assume that the unknown nonlinearity N of the equation satisfies …

Deconvolutional determination of the nonlinearity in a semilinear wave equation

N Hu, R Killip, M Visan - arXiv preprint arXiv:2307.00829, 2023 - arxiv.org
arXiv:2307.00829v1 [math.AP] 3 Jul 2023 Page 1 arXiv:2307.00829v1 [math.AP] 3 Jul 2023
DECONVOLUTIONAL DETERMINATION OF THE NONLINEARITY IN A SEMILINEAR WAVE …

Determination of Schr\" odinger nonlinearities from the scattering map

R Killip, J Murphy, M Visan - arXiv preprint arXiv:2402.03218, 2024 - arxiv.org
We prove that the small-data scattering map uniquely determines the nonlinearity for a wide
class of gauge-invariant, intercritical nonlinear Schr\" odinger equations. We use the Born …

On inverse scattering for the two-dimensional nonlinear Klein-Gordon equation

H Sasaki - arXiv preprint arXiv:2406.06362, 2024 - arxiv.org
The inverse scattering problem for the two-dimensional nonlinear Klein-Gordon equation $
u_ {tt}-\Delta u+ u=\mathcal {N}(u) $ is studied. We assume that the unknown nonlinearity …