Towards continual reinforcement learning: A review and perspectives

K Khetarpal, M Riemer, I Rish, D Precup - Journal of Artificial Intelligence …, 2022 - jair.org
In this article, we aim to provide a literature review of different formulations and approaches
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …

An overview of multi-task learning

Y Zhang, Q Yang - National Science Review, 2018 - academic.oup.com
As a promising area in machine learning, multi-task learning (MTL) aims to improve the
performance of multiple related learning tasks by leveraging useful information among them …

Rewarded soups: towards pareto-optimal alignment by interpolating weights fine-tuned on diverse rewards

A Rame, G Couairon, C Dancette… - Advances in …, 2024 - proceedings.neurips.cc
Foundation models are first pre-trained on vast unsupervised datasets and then fine-tuned
on labeled data. Reinforcement learning, notably from human feedback (RLHF), can further …

[PDF][PDF] 深度强化学习综述

刘全, 翟建伟, 章宗长, 钟珊, 周倩, 章鹏, 徐进 - 计算机学报, 2018 - cdn.jsdelivr.net
:强化学习是学习环境状态到动作的一种映射,并且能够获得最大的奖赏信号.在大规模状 Page 1
第40 卷 计算机学报 Vol. 40 2017 年论文在线出版号No.1 CHINESE JOURNAL OF …

Contrastive learning as goal-conditioned reinforcement learning

B Eysenbach, T Zhang, S Levine… - Advances in Neural …, 2022 - proceedings.neurips.cc
In reinforcement learning (RL), it is easier to solve a task if given a good representation.
While deep RL should automatically acquire such good representations, prior work often …

Multi-task learning for dense prediction tasks: A survey

S Vandenhende, S Georgoulis… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
With the advent of deep learning, many dense prediction tasks, ie, tasks that produce pixel-
level predictions, have seen significant performance improvements. The typical approach is …

Gradient surgery for multi-task learning

T Yu, S Kumar, A Gupta, S Levine… - Advances in Neural …, 2020 - proceedings.neurips.cc
While deep learning and deep reinforcement learning (RL) systems have demonstrated
impressive results in domains such as image classification, game playing, and robotic …

Curriculum learning for reinforcement learning domains: A framework and survey

S Narvekar, B Peng, M Leonetti, J Sinapov… - Journal of Machine …, 2020 - jmlr.org
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks
in which the agent has only limited environmental feedback. Despite many advances over …

Model-based reinforcement learning: A survey

TM Moerland, J Broekens, A Plaat… - … and Trends® in …, 2023 - nowpublishers.com
Sequential decision making, commonly formalized as Markov Decision Process (MDP)
optimization, is an important challenge in artificial intelligence. Two key approaches to this …

A definition of continual reinforcement learning

D Abel, A Barreto, B Van Roy… - Advances in …, 2024 - proceedings.neurips.cc
In a standard view of the reinforcement learning problem, an agent's goal is to efficiently
identify a policy that maximizes long-term reward. However, this perspective is based on a …