A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection

M Jin, HY Koh, Q Wen, D Zambon… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …

Deep learning for anomaly detection in time-series data: Review, analysis, and guidelines

K Choi, J Yi, C Park, S Yoon - IEEE access, 2021 - ieeexplore.ieee.org
As industries become automated and connectivity technologies advance, a wide range of
systems continues to generate massive amounts of data. Many approaches have been …

Tranad: Deep transformer networks for anomaly detection in multivariate time series data

S Tuli, G Casale, NR Jennings - arXiv preprint arXiv:2201.07284, 2022 - arxiv.org
Efficient anomaly detection and diagnosis in multivariate time-series data is of great
importance for modern industrial applications. However, building a system that is able to …

Graph neural network-based anomaly detection in multivariate time series

A Deng, B Hooi - Proceedings of the AAAI conference on artificial …, 2021 - ojs.aaai.org
Given high-dimensional time series data (eg, sensor data), how can we detect anomalous
events, such as system faults and attacks? More challengingly, how can we do this in a way …

Learning graph structures with transformer for multivariate time-series anomaly detection in IoT

Z Chen, D Chen, X Zhang, Z Yuan… - IEEE Internet of Things …, 2021 - ieeexplore.ieee.org
Many real-world Internet of Things (IoT) systems, which include a variety of Internet-
connected sensory devices, produce substantial amounts of multivariate time-series data …

MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks

D Li, D Chen, B Jin, L Shi, J Goh, SK Ng - International conference on …, 2019 - Springer
Many real-world cyber-physical systems (CPSs) are engineered for mission-critical tasks
and usually are prime targets for cyber-attacks. The rich sensor data in CPSs can be …

MST-GAT: A multimodal spatial–temporal graph attention network for time series anomaly detection

C Ding, S Sun, J Zhao - Information Fusion, 2023 - Elsevier
Multimodal time series (MTS) anomaly detection is crucial for maintaining the safety and
stability of working devices (eg, water treatment system and spacecraft), whose data are …

Adversarial examples: A survey of attacks and defenses in deep learning-enabled cybersecurity systems

M Macas, C Wu, W Fuertes - Expert Systems with Applications, 2024 - Elsevier
Over the last few years, the adoption of machine learning in a wide range of domains has
been remarkable. Deep learning, in particular, has been extensively used to drive …

Self-supervised learning for time series analysis: Taxonomy, progress, and prospects

K Zhang, Q Wen, C Zhang, R Cai, M Jin… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Self-supervised learning (SSL) has recently achieved impressive performance on various
time series tasks. The most prominent advantage of SSL is that it reduces the dependence …

A survey on deep learning for cybersecurity: Progress, challenges, and opportunities

M Macas, C Wu, W Fuertes - Computer Networks, 2022 - Elsevier
As the number of Internet-connected systems rises, cyber analysts find it increasingly difficult
to effectively monitor the produced volume of data, its velocity and diversity. Signature-based …