[HTML][HTML] Road extraction in remote sensing data: A survey

Z Chen, L Deng, Y Luo, D Li, JM Junior… - International journal of …, 2022 - Elsevier
Automated extraction of roads from remotely sensed data come forth various usages ranging
from digital twins for smart cities, intelligent transportation, urban planning, autonomous …

A global context-aware and batch-independent network for road extraction from VHR satellite imagery

Q Zhu, Y Zhang, L Wang, Y Zhong, Q Guan, X Lu… - ISPRS Journal of …, 2021 - Elsevier
Road extraction is to automatically label the pixels of roads in satellite imagery with specific
semantic categories based on the extraction of the topographical meaningful features. For …

UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery

L Wang, R Li, C Zhang, S Fang, C Duan, X Meng… - ISPRS Journal of …, 2022 - Elsevier
Semantic segmentation of remotely sensed urban scene images is required in a wide range
of practical applications, such as land cover mapping, urban change detection …

Split depth-wise separable graph-convolution network for road extraction in complex environments from high-resolution remote-sensing images

G Zhou, W Chen, Q Gui, X Li… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Road information from high-resolution remote-sensing images is widely used in various
fields, and deep-learning-based methods have effectively shown high road-extraction …

Stagewise unsupervised domain adaptation with adversarial self-training for road segmentation of remote-sensing images

L Zhang, M Lan, J Zhang, D Tao - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Road segmentation from remote-sensing images is a challenging task with wide ranges of
application potentials. Deep neural networks have advanced this field by leveraging the …

Image synthesis with adversarial networks: A comprehensive survey and case studies

P Shamsolmoali, M Zareapoor, E Granger, H Zhou… - Information …, 2021 - Elsevier
Abstract Generative Adversarial Networks (GANs) have been extremely successful in
various application domains such as computer vision, medicine, and natural language …

[HTML][HTML] SemiRoadExNet: A semi-supervised network for road extraction from remote sensing imagery via adversarial learning

H Chen, Z Li, J Wu, W Xiong, C Du - ISPRS Journal of Photogrammetry and …, 2023 - Elsevier
Road extraction from remote sensing imagery is a popular and frontier research focus, since
road information plays an essential role in application fields, such as urban management …

[HTML][HTML] A review and meta-analysis of generative adversarial networks and their applications in remote sensing

S Jozdani, D Chen, D Pouliot, BA Johnson - International Journal of Applied …, 2022 - Elsevier
Abstract Generative Adversarial Networks (GANs) are one of the most creative advances in
Deep Learning (DL) in recent years. The Remote Sensing (RS) community has adopted …

Pavement defect detection with deep learning: A comprehensive survey

L Fan, D Wang, J Wang, Y Li, Y Cao… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Pavement defect detection is of profound significance regarding road safety, so it has been a
trending research topic. In the past years, deep learning based methods have turned into a …

Semantic segmentation and edge detection—Approach to road detection in very high resolution satellite images

H Ghandorh, W Boulila, S Masood, A Koubaa… - Remote Sensing, 2022 - mdpi.com
Road detection technology plays an essential role in a variety of applications, such as urban
planning, map updating, traffic monitoring and automatic vehicle navigation. Recently, there …