Blockchain-based federated learning for securing internet of things: A comprehensive survey
The Internet of Things (IoT) ecosystem connects physical devices to the internet, offering
significant advantages in agility, responsiveness, and potential environmental benefits. The …
significant advantages in agility, responsiveness, and potential environmental benefits. The …
Distributed learning in wireless networks: Recent progress and future challenges
The next-generation of wireless networks will enable many machine learning (ML) tools and
applications to efficiently analyze various types of data collected by edge devices for …
applications to efficiently analyze various types of data collected by edge devices for …
A survey on federated learning
C Zhang, Y Xie, H Bai, B Yu, W Li, Y Gao - Knowledge-Based Systems, 2021 - Elsevier
Federated learning is a set-up in which multiple clients collaborate to solve machine
learning problems, which is under the coordination of a central aggregator. This setting also …
learning problems, which is under the coordination of a central aggregator. This setting also …
Realizing the metaverse with edge intelligence: A match made in heaven
Dubbed “the successor to the mobile Internet,” the concept of the Metaverse has recently
exploded in popularity. While there exists lite versions of the Metaverse today, we are still far …
exploded in popularity. While there exists lite versions of the Metaverse today, we are still far …
Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems
The communication and networking field is hungry for machine learning decision-making
solutions to replace the traditional model-driven approaches that proved to be not rich …
solutions to replace the traditional model-driven approaches that proved to be not rich …
A survey on federated learning: The journey from centralized to distributed on-site learning and beyond
S AbdulRahman, H Tout… - IEEE Internet of …, 2020 - ieeexplore.ieee.org
Driven by privacy concerns and the visions of deep learning, the last four years have
witnessed a paradigm shift in the applicability mechanism of machine learning (ML). An …
witnessed a paradigm shift in the applicability mechanism of machine learning (ML). An …
Fedml: A research library and benchmark for federated machine learning
Federated learning (FL) is a rapidly growing research field in machine learning. However,
existing FL libraries cannot adequately support diverse algorithmic development; …
existing FL libraries cannot adequately support diverse algorithmic development; …
Energy efficient federated learning over wireless communication networks
In this paper, the problem of energy efficient transmission and computation resource
allocation for federated learning (FL) over wireless communication networks is investigated …
allocation for federated learning (FL) over wireless communication networks is investigated …
Convergence of edge computing and deep learning: A comprehensive survey
Ubiquitous sensors and smart devices from factories and communities are generating
massive amounts of data, and ever-increasing computing power is driving the core of …
massive amounts of data, and ever-increasing computing power is driving the core of …
From distributed machine learning to federated learning: A survey
In recent years, data and computing resources are typically distributed in the devices of end
users, various regions or organizations. Because of laws or regulations, the distributed data …
users, various regions or organizations. Because of laws or regulations, the distributed data …