Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuits

AB Watts, R Kothari, L Schaeffer, A Tal - … of the 51st Annual ACM SIGACT …, 2019 - dl.acm.org
Recently, Bravyi, Gosset, and Konig (Science, 2018) exhibited a search problem called the
2D Hidden Linear Function (2D HLF) problem that can be solved exactly by a constant …

An SU (2)-symmetric semidefinite programming hierarchy for Quantum Max Cut

J Takahashi, C Rayudu, C Zhou, R King… - arXiv preprint arXiv …, 2023 - arxiv.org
Understanding and approximating extremal energy states of local Hamiltonians is a central
problem in quantum physics and complexity theory. Recent work has focused on developing …

Union bound for quantum information processing

S Khabbazi Oskouei, S Mancini… - Proceedings of the …, 2019 - royalsocietypublishing.org
In this paper, we prove a quantum union bound that is relevant when performing a sequence
of binary-outcome quantum measurements on a quantum state. The quantum union bound …

Nonlocal games with noisy maximally entangled states are decidable

M Qin, P Yao - SIAM Journal on Computing, 2021 - SIAM
This paper considers a special class of nonlocal games (G,ψ), where G is a two-player one-
round game, and ψ is a bipartite state independent of G. In the game (G,ψ), the players are …

3XOR games with perfect commuting operator strategies have perfect tensor product strategies and are decidable in polynomial time

A Bene Watts, JW Helton - Communications in Mathematical Physics, 2023 - Springer
We consider 3XOR games with perfect commuting operator strategies. Given any 3XOR
game, we show existence of a perfect commuting operator strategy for the game can be …

Applications of optimization to factorization ranks and quantum information theory

S Gribling - 2019 - research.tilburguniversity.edu
Optimization is a fundamental area in mathematics and computer science, with many real-
world applications. In this thesis we study the efficiency with which we can solve certain …

Bounding quantum-classical separations for classes of nonlocal games

T Bannink, J Briët, H Buhrman, F Labib… - arXiv preprint arXiv …, 2018 - arxiv.org
We bound separations between the entangled and classical values for several classes of
nonlocal $ t $-player games. Our motivating question is whether there is a family of $ t …

Separating pseudo-telepathy games and two-local theories

L Mathieu, M Mhalla - arXiv preprint arXiv:1806.08661, 2018 - arxiv.org
We give an $\dfrac {1}{54} $ separation between 5-party pseudo-telepathy games and two-
local theories. We define the notion of strategy in a k-local theory for a game, and extend the …

[PDF][PDF] Quasirandomness in quantum information theory

F Labib - 2022 - pure.uva.nl
In this dissertation, we study quasirandomness in several contexts, mostly in quantum
information theory. An object is quasirandom if it shares properties with a random object …

[PDF][PDF] Solvability Threshold for Random Binary 3XOR Games

J Hughes - 2024 - math.ucsd.edu
This honors thesis arose from an undertaking to determine the critical threshold of 3XOR
game (if it exists). A game amounts to a special system of m equations with 3n unknowns …