Model-based adaptive spatial sampling for occurrence map construction
In many environmental management problems, the construction of occurrence maps of
species of interest is a prerequisite to their effective management. However, the construction …
species of interest is a prerequisite to their effective management. However, the construction …
A method for learning a sparse classifier in the presence of missing data for high-dimensional biological datasets
Motivation This work addresses two common issues in building classification models for
biological or medical studies: learning a sparse model, where only a subset of a large …
biological or medical studies: learning a sparse model, where only a subset of a large …
Causal queries from observational data in biological systems via Bayesian networks: an empirical study in small networks
A White, M Vignes - Gene Regulatory Networks: Methods and Protocols, 2019 - Springer
Biological networks are a very convenient modeling and visualization tool to discover
knowledge from modern high-throughput genomics and post-genomics data sets. Indeed …
knowledge from modern high-throughput genomics and post-genomics data sets. Indeed …
Modelling structured data with probabilistic graphical models
F Forbes - Statistics for Astrophysics-Classification and Clustering, 2016 - hal.science
Most clustering and classification methods are based on the assumption that the objects to
be clustered are independent. However, in more and more modern applications, data are …
be clustered are independent. However, in more and more modern applications, data are …
SpaCEM3: a software for biological module detection when data is incomplete, high dimensional and dependent
Among classical methods for module detection, SpaCEM3 provides ad hoc algorithms that
were shown to be particularly well adapted to specific features of biological data: high …
were shown to be particularly well adapted to specific features of biological data: high …
New trends in Markov models and related learning to restore data
F Forbes, W Pieczynski - 2009 IEEE International Workshop on …, 2009 - ieeexplore.ieee.org
We present recent approaches that extend standard Markov models and increase their
modelling power. These capabilities are illustrated in the cited published works and more …
modelling power. These capabilities are illustrated in the cited published works and more …
Métodos de inferencia estadística para entrenamiento de modelos ocultos de Markov
RAM León - Elementos, 2011 - revistas.poligran.edu.co
Este documento presenta una revisión general de las diferentes aproximaciones y métodos
en inferencia estadística, aplicados al problema de entrenamiento o ajuste de parámetros …
en inferencia estadística, aplicados al problema de entrenamiento o ajuste de parámetros …
[PDF][PDF] Le logiciel SpaCEM3 pour la classification de données complexes.
J Blanchet, F Forbes, S Chopart… - Monde des Util. Anal …, 2009 - mistis.inrialpes.fr
Résumé Le logiciel SpaCEM 3 (Spatial Clustering with EM and Markov Models) propose
une variété d'algorithmes pour la classification, supervisée ou non supervisée, de données …
une variété d'algorithmes pour la classification, supervisée ou non supervisée, de données …
색조영상에서랜덤결측화소값대체를위한EM 알고리즘기반기법
김승구 - 응용통계연구, 2010 - dbpia.co.kr
본 논문에서는 색조영상의 R-, G-, B-성분에서 랜덤결측된 화소값들의 대체를 위한
프리퀀티스틱 (frequentictic) 기법을 제공한다. 이 기법은 관측영상을 가우시안 마코프 랜덤필드 …
프리퀀티스틱 (frequentictic) 기법을 제공한다. 이 기법은 관측영상을 가우시안 마코프 랜덤필드 …
[PDF][PDF] Clustering of incomplete, high dimensional and dependent biological data with SpaCEM3
M Vignes, J Blanchet, D Leroux… - Journée Satellite JOBIM …, 2010 - mistis.inrialpes.fr
The SpaCEM3 software makes the most of variational estimates in Markov Random Field
(MRF) models to cluster (i) high-dimensional (ii) dependent and (iii) incomplete data. This …
(MRF) models to cluster (i) high-dimensional (ii) dependent and (iii) incomplete data. This …