Model-based adaptive spatial sampling for occurrence map construction

N Peyrard, R Sabbadin, D Spring, B Brook… - Statistics and …, 2013 - Springer
In many environmental management problems, the construction of occurrence maps of
species of interest is a prerequisite to their effective management. However, the construction …

A method for learning a sparse classifier in the presence of missing data for high-dimensional biological datasets

KA Severson, B Monian, JC Love, RD Braatz - Bioinformatics, 2017 - academic.oup.com
Motivation This work addresses two common issues in building classification models for
biological or medical studies: learning a sparse model, where only a subset of a large …

Causal queries from observational data in biological systems via Bayesian networks: an empirical study in small networks

A White, M Vignes - Gene Regulatory Networks: Methods and Protocols, 2019 - Springer
Biological networks are a very convenient modeling and visualization tool to discover
knowledge from modern high-throughput genomics and post-genomics data sets. Indeed …

Modelling structured data with probabilistic graphical models

F Forbes - Statistics for Astrophysics-Classification and Clustering, 2016 - hal.science
Most clustering and classification methods are based on the assumption that the objects to
be clustered are independent. However, in more and more modern applications, data are …

SpaCEM3: a software for biological module detection when data is incomplete, high dimensional and dependent

M Vignes, J Blanchet, D Leroux, F Forbes - Bioinformatics, 2011 - academic.oup.com
Among classical methods for module detection, SpaCEM3 provides ad hoc algorithms that
were shown to be particularly well adapted to specific features of biological data: high …

New trends in Markov models and related learning to restore data

F Forbes, W Pieczynski - 2009 IEEE International Workshop on …, 2009 - ieeexplore.ieee.org
We present recent approaches that extend standard Markov models and increase their
modelling power. These capabilities are illustrated in the cited published works and more …

Métodos de inferencia estadística para entrenamiento de modelos ocultos de Markov

RAM León - Elementos, 2011 - revistas.poligran.edu.co
Este documento presenta una revisión general de las diferentes aproximaciones y métodos
en inferencia estadística, aplicados al problema de entrenamiento o ajuste de parámetros …

[PDF][PDF] Le logiciel SpaCEM3 pour la classification de données complexes.

J Blanchet, F Forbes, S Chopart… - Monde des Util. Anal …, 2009 - mistis.inrialpes.fr
Résumé Le logiciel SpaCEM 3 (Spatial Clustering with EM and Markov Models) propose
une variété d'algorithmes pour la classification, supervisée ou non supervisée, de données …

색조영상에서랜덤결측화소값대체를위한EM 알고리즘기반기법

김승구 - 응용통계연구, 2010 - dbpia.co.kr
본 논문에서는 색조영상의 R-, G-, B-성분에서 랜덤결측된 화소값들의 대체를 위한
프리퀀티스틱 (frequentictic) 기법을 제공한다. 이 기법은 관측영상을 가우시안 마코프 랜덤필드 …

[PDF][PDF] Clustering of incomplete, high dimensional and dependent biological data with SpaCEM3

M Vignes, J Blanchet, D Leroux… - Journée Satellite JOBIM …, 2010 - mistis.inrialpes.fr
The SpaCEM3 software makes the most of variational estimates in Markov Random Field
(MRF) models to cluster (i) high-dimensional (ii) dependent and (iii) incomplete data. This …