Towards Adaptive Smoothed Aggregation (SA) for Nonsymmetric Problems
M Brezina, T Manteuffel, S McCormick, J Ruge… - SIAM Journal on …, 2010 - SIAM
Applying smoothed aggregation (SA) multigrid to solve a nonsymmetric linear system, Ax=b,
is often impeded by the lack of a minimization principle that can be used as a basis for the …
is often impeded by the lack of a minimization principle that can be used as a basis for the …
Algebraic multigrid solvers for complex-valued matrices
SP MacLachlan, CW Oosterlee - SIAM Journal on scientific computing, 2008 - SIAM
In the mathematical modeling of real-life applications, systems of equations with complex
coefficients often arise. While many techniques of numerical linear algebra, eg, Krylov …
coefficients often arise. While many techniques of numerical linear algebra, eg, Krylov …
Relaxation‐corrected bootstrap algebraic multigrid (rBAMG)
M Brezina, C Ketelsen, T Manteuffel… - … Linear Algebra with …, 2012 - Wiley Online Library
Bootstrap algebraic multigrid (BAMG) is a multigrid‐based solver for matrix equations of the
form Ax= b. Its aim is to automatically determine the interpolation weights used in algebraic …
form Ax= b. Its aim is to automatically determine the interpolation weights used in algebraic …
Robust and adaptive multigrid methods: comparing structured and algebraic approaches
SP MacLachlan, JD Moulton… - … Linear Algebra with …, 2012 - Wiley Online Library
Although there have been significant advances in robust algebraic multigrid (AMG) methods
in recent years, numerical studies and emerging hardware architectures continue to favor …
in recent years, numerical studies and emerging hardware architectures continue to favor …
[PDF][PDF] Adaptive reduction-based multigrid for nearly singular and highly disordered physical systems
Classical multigrid solution of linear systems with matrices that have highly variable entries
and are nearly singular is made difficult by the compounding difficulties introduced by these …
and are nearly singular is made difficult by the compounding difficulties introduced by these …
Extending the applicability of multigrid methods
J Brannick, M Brezina, R Falgout… - Journal of Physics …, 2006 - iopscience.iop.org
Multigrid methods are ideal for solving the increasingly large-scale problems that arise in
numerical simulations of physical phenomena because of their potential for computational …
numerical simulations of physical phenomena because of their potential for computational …
Least-squares finite element methods for quantum electrodynamics
A significant amount of the computational time in large Monte Carlo simulations of lattice
field theory is spent inverting the discrete Dirac operator. Unfortunately, traditional covariant …
field theory is spent inverting the discrete Dirac operator. Unfortunately, traditional covariant …
New multigrid solver advances in TOPS
RD Falgout, J Brannick, M Brezina… - Journal of Physics …, 2005 - iopscience.iop.org
In this paper, we highlight new multigrid solver advances in the Terascale Optimal PDE
Simulations (TOPS) project in the Scientific Discovery Through Advanced Computing …
Simulations (TOPS) project in the Scientific Discovery Through Advanced Computing …
[PDF][PDF] A MULTIGRID PRIMER
SF MCCORMICK, R TAMSTORF - grandmaster.colorado.edu
While several tutorials and texts exists that introduce basic and advanced aspects of
multigrid methodology, the aim here is a relatively short exposition that is simplified by …
multigrid methodology, the aim here is a relatively short exposition that is simplified by …
Finite element methods for quantum electrodynamics using a Helmholtz decomposition of the gauge field
C Ketelsen, T Manteuffel… - … Linear Algebra with …, 2010 - Wiley Online Library
The Dirac equation of quantum electrodynamics describes the interaction between electrons
and photons. Large‐scale numerical simulations of the theory require repeated solution of …
and photons. Large‐scale numerical simulations of the theory require repeated solution of …