Machine learning in additive manufacturing: State-of-the-art and perspectives

C Wang, XP Tan, SB Tor, CS Lim - Additive Manufacturing, 2020 - Elsevier
Additive manufacturing (AM) has emerged as a disruptive digital manufacturing technology.
However, its broad adoption in industry is still hindered by high entry barriers of design for …

A review of vision-based traffic semantic understanding in ITSs

J Chen, Q Wang, HH Cheng, W Peng… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
A semantic understanding of road traffic can help people understand road traffic flow
situations and emergencies more accurately and provide a more accurate basis for anomaly …

Rethinking counting and localization in crowds: A purely point-based framework

Q Song, C Wang, Z Jiang, Y Wang… - Proceedings of the …, 2021 - openaccess.thecvf.com
Localizing individuals in crowds is more in accordance with the practical demands of
subsequent high-level crowd analysis tasks than simply counting. However, existing …

Rethinking spatial invariance of convolutional networks for object counting

ZQ Cheng, Q Dai, H Li, J Song, X Wu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Previous work generally believes that improving the spatial invariance of convolutional
networks is the key to object counting. However, after verifying several mainstream counting …

A generalized loss function for crowd counting and localization

J Wan, Z Liu, AB Chan - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Previous work shows that a better density map representation can improve the performance
of crowd counting. In this paper, we investigate learning the density map representation …

Bayesian loss for crowd count estimation with point supervision

Z Ma, X Wei, X Hong, Y Gong - Proceedings of the IEEE …, 2019 - openaccess.thecvf.com
In crowd counting datasets, each person is annotated by a point, which is usually the center
of the head. And the task is to estimate the total count in a crowd scene. Most of the state-of …

Context-aware crowd counting

W Liu, M Salzmann, P Fua - … of the IEEE/CVF conference on …, 2019 - openaccess.thecvf.com
State-of-the-art methods for counting people in crowded scenes rely on deep networks to
estimate crowd density. They typically use the same filters over the whole image or over …

Composition loss for counting, density map estimation and localization in dense crowds

H Idrees, M Tayyab, K Athrey… - Proceedings of the …, 2018 - openaccess.thecvf.com
With multiple crowd gatherings of millions of people every year in events ranging from
pilgrimages to protests, concerts to marathons, and festivals to funerals; visual crowd …

Csrnet: Dilated convolutional neural networks for understanding the highly congested scenes

Y Li, X Zhang, D Chen - … of the IEEE conference on computer …, 2018 - openaccess.thecvf.com
We propose a network for Congested Scene Recognition called CSRNet to provide a data-
driven and deep learning method that can understand highly congested scenes and perform …

Scale aggregation network for accurate and efficient crowd counting

X Cao, Z Wang, Y Zhao, F Su - Proceedings of the …, 2018 - openaccess.thecvf.com
In this paper, we propose a novel encoder-decoder network, called extit {Scale Aggregation
Network (SANet)}, for accurate and efficient crowd counting. The encoder extracts multi …