Machine learning in additive manufacturing: State-of-the-art and perspectives
Additive manufacturing (AM) has emerged as a disruptive digital manufacturing technology.
However, its broad adoption in industry is still hindered by high entry barriers of design for …
However, its broad adoption in industry is still hindered by high entry barriers of design for …
A review of vision-based traffic semantic understanding in ITSs
J Chen, Q Wang, HH Cheng, W Peng… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
A semantic understanding of road traffic can help people understand road traffic flow
situations and emergencies more accurately and provide a more accurate basis for anomaly …
situations and emergencies more accurately and provide a more accurate basis for anomaly …
Rethinking counting and localization in crowds: A purely point-based framework
Localizing individuals in crowds is more in accordance with the practical demands of
subsequent high-level crowd analysis tasks than simply counting. However, existing …
subsequent high-level crowd analysis tasks than simply counting. However, existing …
Rethinking spatial invariance of convolutional networks for object counting
Previous work generally believes that improving the spatial invariance of convolutional
networks is the key to object counting. However, after verifying several mainstream counting …
networks is the key to object counting. However, after verifying several mainstream counting …
A generalized loss function for crowd counting and localization
Previous work shows that a better density map representation can improve the performance
of crowd counting. In this paper, we investigate learning the density map representation …
of crowd counting. In this paper, we investigate learning the density map representation …
Bayesian loss for crowd count estimation with point supervision
In crowd counting datasets, each person is annotated by a point, which is usually the center
of the head. And the task is to estimate the total count in a crowd scene. Most of the state-of …
of the head. And the task is to estimate the total count in a crowd scene. Most of the state-of …
Context-aware crowd counting
State-of-the-art methods for counting people in crowded scenes rely on deep networks to
estimate crowd density. They typically use the same filters over the whole image or over …
estimate crowd density. They typically use the same filters over the whole image or over …
Composition loss for counting, density map estimation and localization in dense crowds
With multiple crowd gatherings of millions of people every year in events ranging from
pilgrimages to protests, concerts to marathons, and festivals to funerals; visual crowd …
pilgrimages to protests, concerts to marathons, and festivals to funerals; visual crowd …
Csrnet: Dilated convolutional neural networks for understanding the highly congested scenes
We propose a network for Congested Scene Recognition called CSRNet to provide a data-
driven and deep learning method that can understand highly congested scenes and perform …
driven and deep learning method that can understand highly congested scenes and perform …
Scale aggregation network for accurate and efficient crowd counting
X Cao, Z Wang, Y Zhao, F Su - Proceedings of the …, 2018 - openaccess.thecvf.com
In this paper, we propose a novel encoder-decoder network, called extit {Scale Aggregation
Network (SANet)}, for accurate and efficient crowd counting. The encoder extracts multi …
Network (SANet)}, for accurate and efficient crowd counting. The encoder extracts multi …